
Julia
A Fast Dynamic Language for Technical Computing

Jeff Bezanson, Stefan Karpinski, Viral B. Shah & Alan Edelman

Why Julia?

Dynamic languages are extremely popular for numerical work:

‣ Matlab, R, NumPy/SciPy, Mathematica, etc.
‣ very simple to learn and easy to do research in

However, all have a “split language” approach:

‣ high-level dynamic language for scripting low-level operations
‣ C/C++/Fortran for implementing fast low-level operations

Libraries in C — no productivity boost for library writers

Forces vectorization — sometimes a scalar loop is just better

Three Key Features

Sophisticated dynamic type system exposed in the language

‣ dependent parametric types; abstract types, a.k.a. traits
‣ polymorphism of all kinds — ad hoc, parametric & duck

Multiple dispatch as the core unifying paradigm

‣ when well-implemented, fast & ubiquitous, it is qualitatively different
‣ many features can be seen as special cases of multiple dispatch

One language for a broad spectrum of programming levels

‣ a*b can compile down to a single machine instruction
‣ a*b can start a computation on a cluster of 1000s of machines

Low-Level Code

function qsort!(a,lo,hi)
 i, j = lo, hi
 while i < hi
 pivot = a[(lo+hi)>>>1]
 while i <= j
 while a[i] < pivot; i = i+1; end
 while a[j] > pivot; j = j-1; end
 if i <= j
 a[i], a[j] = a[j], a[i]
 i, j = i+1, j-1
 end
 end
 if lo < j; qsort!(a,lo,j); end
 lo, j = i, hi
 end
 return a
end

Medium-Level Code

function randmatstat(t,n)
 v = zeros(t)
 w = zeros(t)
 for i = 1:t
 a = randn(n,n)
 b = randn(n,n)
 c = randn(n,n)
 d = randn(n,n)
 P = [a b c d]
 Q = [a b; c d]
 v[i] = trace((P'*P)^4)
 w[i] = trace((Q'*Q)^4)
 end
 std(v)/mean(v), std(w)/mean(w)
end

High-Level Code

function copy_to(dst::DArray, src::DArray)
 @sync begin
 for p in dst.pmap
 @spawnat p copy_to(localize(dst), localize(src,dst))
 end
 end
 return dst
end

function copy_to(dest::AbstractArray, src)
 i = 1
 for x in src
 dest[i] = x
 i += 1
 end
 return dest
end

Calling C/Fortran

getpid() = ccall(:getpid, Uint32, ())

libfdm = dlopen("libfdm")
besselj0(x::Float64) =
 ccall(dlsym(libfdm, :j0), Float64, (Float64,), x)

function fill!{T<:Union(Int8,Uint8)}(a::Array{T}, x::Integer)
 ccall(:memset, Void, (Ptr{T},Int32,Int), a, x, length(a))
 return a
end

system(cmd::String) = ccall(:system, Int32, (Ptr{Uint8},), cmd)

The Numeric Promotion Dilemma

Most languages allow you to mix numeric types

‣ not having this gets annoying very quickly
Ada, OCaml (?), assembly

Traditional solution is to build promotion rules into the language

‣ otherwise too slow
‣ but doesn’t work for user-defined types

Ideally want something generic, extensible & fast

1 + 2.5 0.5 + 3im …

Promotion via Multiple Dispatch

Built-in definitions:

function promote{T,S}(x::T, y::S)
 P = promote_type(T,S)
 convert(P,x), convert(P,y)
end

+(x::Number, y::Number) = +(promote(x,y)...)

When adding a new type:

promote_rule(::Type{Complex128}, ::Type{Float64}) = Complex128

convert(::Type{Complex128}, x::Real) = complex128(x,0)

+(z::Complex128, w::Complex128) =
 complex128(z.re+w.re, z.im+w.im)

Type System — What’s Normal

Nominative type hierarchy

Bits types, composite types, abstract types

Tuple types (argument lists)

Union types

Types have parameters (invariant)

Rational{Int32}(1,2)

Rational(1,2)

Type System — What’s Unusual

Parametric methods and “type patterns”

r{T<:Integer}(x::T, y::T) = Rational{T}(x,y)

r(1,2)

Singleton kinds

sizeof(::Type{Int16}) = 2

sizeof(Int16) ⇒ 2

Example — matrices that can be passed to LAPACK:

typealias StridedMatrix{T,A<:Array}
 Union(Matrix{T},SubArray{T,2,A})

Dynamic Type Inference

Tags, not types

Tries to “guess” the tags

Entirely run-time semantics

Can improve the algorithm without updating the spec

Dynamic Type Inference

Abstract interpretation of lowered form:

‣ assignments, calls, conditional branches, exception handlers

Apply type transfer functions to handle calls

Small set of primitives with simple, known t-functions

The t-function for generic functions is

Key Optimizations

Aggressive method specialization

Lots of inlining

Elimination of apply()

apply(f, (a, b)) ⇒ f(a,b)
apply(f, t::(T,S)) ⇒ f(t[1], t[2])

Multiple value cons-elimination

(a, b) = (f(), g()) ⇒ t1 = f(); t2 = g()
 a = t1; b = t2

Performance

Disadvantages

Method ambiguities

‣ can print a very specific warning (using type intersection)

Generated code, compiler data structures and type information take up memory

‣ realistically, can’t run Julia in < 200Mb today

About 144 bytes/LOC in the library

Building from scratch is slow

‣ ~15 sec system image build time to prime the cache (but done off-line)

Modularity is a bit tricky with multiple dispatch

Type info only flows “forward” — no return type overloading

People Like It!

“Frustrated matlab and R user wanting a language that doesn't sacrifice
performance.”

“Where has Julia been this past two years!? I had searched for it high and
low, day and night, to the point of nearly driving myself insane.”

“I'm having a lot of *fun* (productive fun!) using Julia and hope to be able to
contribute.”

“...everything I wished I’d had in MATLAB and for data analysis for years
now…”

“I’m really excited that you’re building a language that looks very much like
what I've wanted for over ten years now.”

Project Statistics

Hundreds of popular numerical functions

Getting traction as an open-source project:

‣ 350,000+ page views
‣ 100,000+ visitors
‣ 3,000+ downloads
‣ 1,000+ GitHub followers
‣ 40+ contributors
‣ 4+ Stefans

http://julialang.org/

http://julialang.org
http://julialang.org

