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£ lofof thsf "EfRo] QITt A0 @ WAKE Shd] AL 137 gtk 718 ERloIAY HE YOS Eof B E Ax

EIIE ZHAIL) T2l iR o) 52 lofi Bjg HQlo) RE0R AUzt i 2k B AAIBHA RECHAL Elglo]
thsl 01917] PAIHO 2 W 4 gl Felrt HIE Sk S YA Qlofi Elg YBE - opf - HnUeigoRA 27,
Efl2 23] Zimtel Alolg £A5to] Aol 0] hE AL ER 2 gick. Z2lolollA El2 1 A2 2Hetel ZiFolo]

E}

£0| 22 Tehojete MOl 2 ERE TEIE clamals Zejot] WY Adolck FAEL HE TR U4t ElUSS

Y2 A HolEln 1 1 Yolg ghelt el ot tAmix|stol YT o] DS 48 2 Y T gy

EQ) 23] 213 ClATfxIRt S QAR QAR " AL AAAY itk QAR T E95| 5718 84
C

olct - + g4l 2 M2 HlolE BRI Holsteld, Ssts BIAS g 2715w Tt 712 0 22 Hole

o7} cigo] A AFI,

2t Blel 22 (519 X1g YUMo R Septol)g )92, & o] ZRAEES AR © RARTE H5g BRI
Zejoto] AN 222 T 53 glojSol jsh Ystu} Alxlof Mo 2 AnAsts A YlolSutA Sk A 729
2] 34 2AIof 9lof 5L vi T2) 7 OB E, ofot P4 AHA 84 Floltk: Hesh Hlojelo] Yol At 24 |zt

AHg1] WEHAE Zistn 22HQ A0jS Zejots BESHR Yut. THE AW B0} Zejols 202 2 He

og

o 2k

© AREA AR 7t E 2ot (MIT 2fol4lls)


https://ko.wikipedia.org/wiki/LLVM
https://ko.wikipedia.org/wiki/JIT_%EC%BB%B4%ED%8C%8C%EC%9D%BC
https://ko.wikipedia.org/wiki/%EB%A6%AC%EC%8A%A4%ED%94%84
https://ko.wikipedia.org/wiki/%ED%8E%84
https://ko.wikipedia.org/wiki/%ED%8C%8C%EC%9D%B4%EC%8D%AC
https://ko.wikipedia.org/wiki/%EB%A3%A8%EC%95%84_(%ED%94%84%EB%A1%9C%EA%B7%B8%EB%9E%98%EB%B0%8D_%EC%96%B8%EC%96%B4)
https://ko.wikipedia.org/wiki/%EB%A3%A8%EB%B9%84_(%ED%94%84%EB%A1%9C%EA%B7%B8%EB%9E%98%EB%B0%8D_%EC%96%B8%EC%96%B4)
https://en.wikipedia.org/wiki/Multiple_dispatch
https://github.com/JuliaLang/julia/blob/master/LICENSE.md
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https://en.wikipedia.org/wiki/Coroutine
https://ko.wikipedia.org/wiki/%EC%9C%A0%EB%8B%88%EC%BD%94%EB%93%9C
https://ko.wikipedia.org/wiki/UTF-8




Chapter 2

SEE

Z2jot] Hx|& o] gt vl2] prEoil A3l S AFgsHAL, AARHE 2 Hutdshs F o] Itk https://ju-
lialang.org/downloads/ol|A &2 Wof mat JuliagE thHR 2 Esta dx|otH Hr,
Julia thahy A3l 3174 (REPL)2 Julia& 71y €A 9 £ Sl STo|Th thaly A3l S ©ed] Julia APA S HE

S5, W ol julias Uil AT & Ak

$ julia
_ _ (O | Documentation: https://docs.julialang.org
) QO QO |
__ V- ___ 't Type "?" for help, "1?" for Pkg help.
I T T O VA
by bt b b Version 1.5.3 (2020-11-09)
/N IN__ 't Official https://julialang.org/ release
1/ i
julia> 1 + 2
3
julia> ans
3

THEH A3 BAS E2817] AL CTRL-DIIEES 719t d 712 &7 L 20 S F27u exit()2 Yatc). i A3y
$4S s, 919t 2o] julia B} Bojx|, AMHo] AL8ALY] g Yiceln] Zwoln Qe AF8ITE 1 + 29}

ROjETH ThoF A2} Yeist B

fd Rl |

Alo
A

0}3x] SH=th. ThA ans 2He W47} 71 ohjato 2 it

~


https://julialang.org/downloads/
https://julialang.org/downloads/
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EHAO| ATE AFST 9002 012 HEY 4 9Irk. ans WAL ThEE A3

Julia & Aol A= LIERLR] o
file.jlehe 22 mtdoll HYE|0] 9l TES A5 faiinclude("file.j1") S Y3t ot

2 o8 ok kol HElo] Y BES U] AsHAE, 224 T 0122 julia Polo AR
%

ofl A<t Zo] julia A3l HHY FHof| 2= ti/fHLE2 [ 4 ARGSZHL 2] 2& script.jlats ZRIMO FHE AR
Z=3lC} o] T2 20| 0|22 9] A4 PROGRAM_FILE O] & A Fch T3} ARGSE: O] Bato] ofjgt-e 84S E3A julia

=2
49128 & WUt gt} J2iut 0] L0l PROGRAM_FILE & OFR AL HA ]z ¢e H2

—= o= =2
2 7/1 It (oFh9] julia E5ES EEE 512t) oS 50, B&s| 23 YEo| 2011 JFS QA4S 2¥Y e o3t
Zol g5t At

$ julia -e 'println(PROGRAM_FILE); for x in ARGS; println(x); end' foo bar

foo

bar

OM® 4 IEE ATYE ThAol] Y3 APAAE 7H5 5t

$ echo 'print1n(PROGRAM_FILE); for x in ARGS; println(x); end' > script.jl
$ julia script.jl foo bar

script.jl

foo

bar

-- FRAR= BP0l S2otol] GAS YRS 2okt AHgei.

$ julia --color=yes -0 -- foo.jl argl arg2..

See also Scripting for more information on writing Julia scripts.

S

-p n XL n7H9] worker ZTRNAE

YBIAIT, ~-machine-file file F43L filed] 2} Yoil 1YY =E0ICt workerS YTt file off AYE = E(ma-

chine) 52 ssh 21912 53 WA BRglo] A 4 9lojo} stol, Juliak A SAES 2L H2o| M7} =lo]

glojo} gt file of 2HgEhe kB [count+][user@lhost[:port] [bind_addr[:port]] 9 22 HAO2 ). user
(

L A user id& YER|, port & 7]& ssh port, count &= ZF L =F MG workerQ] JH4 (Z]1€ZF ¢ 1) bin-to

—

Juliat -p S0 --machine-file §/3& 01-85t0] B oA HPAIZ 4 Qleh
.'I

ol
.

bind_addr[:port] & MEHZIQl 2402 t}= workerS0] 9] worker2 HZA5H7] all WQSH EX [P 49 ZEE

gy,



gtek JuliaZ} A134Et wfjoict AlSiE|= I E7} QIckd 1 FEE ~/.julia/config/startup.jl of YO i}
$ echo 'println("Greetings! #F! QtESIML7?")" > ~/.julia/config/startup.jl
$ julia

Greetings! §F! QtESIM| L7

perl ¥} ruby 2+ 0], Julia I=5 Pt S AYst= Y2 ozt 2ol 0247127t At

julia [switches] -- [programfile] [args...]

Julia 1.1

In Julia 1.0, the default --project=@. option did not search up from the root directory of a Git repository

for the Project.toml file. From Julia 1.1 forward, it does.

2.1 AR

Z2jo} YAOIEQ] 27| Ho|X|ol] AFR AL W 283 242

hd

i

AAd5H0] EOoHERi.


https://juliakorea.github.io/learning/
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A9)3]

e
0%

-v, --version

i)

2

Ll

b
=

Al

t}

i

-h, --help

3 (0] viMz)) S BAISY

command-line

--project[={<dir>{@.

}1Set <dir> as the home project/environment. The default @. option will search through
parent directories until a Project.toml or JuliaProject.toml file is found.

-], --sysimage
<file>

Z0j71 A|AH] o]u|x] n} 2 At

A

-H, --home <dir>

yaynielo] 93] 2yt

julia 2

--startup-
file={yes|no}

~/.julia/config/startup.jl & E2]2Tt

--handle-
signals={yes|no}

Julia® 712 A2d 5

2ig A7 Aot

--sysimage-native-
code={yes|no}

A2H ou|x]9] 7| & TE AHG/AIESHA] S

--compiled-
modules={yes|no}

#

REO| A 38

njlg BahulEEt st

-e, ——eval <expr>

AlSHO
=3

-

o

t}

<expr><

r

-E, --print <expr>

2 A=)
= }‘l—'_]ooo}j—

23 ot

]
rok

A

tju

<expr>

-L, --load <file>

Filog BE D

MMl 2Egtt

-p, --procs N7HO] 24 worker ZENAE 2712 F/J3IT}; auto= 2 CPU A& (&=2]3 F0j)
{N{auto} 029 worker ZE2AM|A S AJAJ5ict

--machine-file <file>o]l LYY= SAEO|A worker Z2MAE Als#sic}

<file>

-i i3}s 25; PEPLE E2|H ininteractive()= trueo]Tt

-q, --quiet L35] Al&st7]: vy glo], REPL F1E QF Boj&rh
--banner={yes|no!auto}A]Z} vljq A2 /A2 SIA] L=

--color={yes|nojauto} 2E BIAE]| MALS HA|SIAL} EA|SHR]| P=

--history-
file={yes|no}

F

18]

=

o2 AYstA

U 2Egi

iy

--depwarn={yes |no}erro@H} &7} 7|t F1E /g3t /vlg/det sttt (errors F1LE ofl2]2 vl
--warn- HAE euztold FaE /st /ulgdet ot
overwrite={yes|no}
-C, --cpu-target <target>7H2] 9] CPU 7|59 AMESITE ARE 7158 442 E2{H helpE 2%
<target>
-0, FE HegAgtol] TAHE HHEE APttt (APEHA] ge FF 20 A3, 2 o]9] gke
——0ptimize={0, 1) 2) 3} }\].%62]- 75"?' 31:1_].7:“ }\E]ég]
-9, -g <level> OH1 P8 B £58 /JeHug/ds Tt (AIYER] S Fe 2 1, 24 0]99) g2
A F2 2l 2)
--inline={yesino} @inlineQ 2 MAH oI5 o= 25 ZT6lA, Ql2tol'ds 51882 2Tt
U] FA A2 E i HP BT (W AAE FA)

--check-
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AN
el

o AYstol 2 4 Utk

A
o

el gicte

g=xe]

oltt. LUzl gt AAL

=
=]

#a 3ol of

.

# Ha x0f| 105 YT

10

julia> x

10

julia> x + 1

11

=1+1

julia> x

AE).

[=]
T

"Hello World!™

julia> x

"Hello World!"

i
_

ol

1.0

julia> x

1.0

-3

julia> y

11
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julia> Z = "My string"

"My string"

julia> customary_phrase = "Hello world!"

"Hello world!"

julia> UniversalDeclarationOfHumanRightsStart = "2 = OI7F2 Efo{Y MEE AS22H I 23t Ao 2o

"RE QIZI2 Bl MRE Afzen O 2 H2(of A0 SSSCH

Julias SUTE 7Igke] 94E 5183k

julia> & = 0.00001

1.0e-5

julia> QHFSIN L2 = "Hello"

"Hello"

julial AJZ]0] U 440t 3142 BRSH 2L W42 AP YT 4 QItHEHGI] Pt wolTh:
julia> pi = 3

3

julia> pi

3

julia> sqrt = 4
4

Tejutolo] ALHE U A4t 84S Tl Polstel st thgat 22 o

m|m
e
)

julia> pi

= 3.1415926535897...

julia> pi = 3



3.1 24 #3] 13

ERROR: cannot assign a value to variable MathConstants.pi from module Main

julia> sqrt(100)

10.0

julia> sqrt = 4

ERROR: cannot assign a value to variable Base.sqrt from module Main

E2 BAHA-Z B a-z), UE() X 00A0EC 2 QUILE 30 B sto 2 Agsfjof St} 3] 31 &
A = Lu/Ll/Lt/Lm/Lo/N1(E2H, Sc/So(E&t & 7]E} 715) ¥ 7
2 22H= 19 £} (0-99F Nd/Noof] Zshe 221 3 7[§t SUIE

JI

3
474 BAY, FEY(PO), 24 (primes) P 271X T2 BA)E B 4 ct,

+9} 22 GAAE QUITO YL ofAHOR TYTLE YR IANHE AWAE WLR NBT £ k. o2
S0l(n)L HE] A48 111, (+) = 2 ATTYS T 4 YL o2} 22 YREY SUIE 39 FAAH(Sm)E Julia®)
Z9 GAIE T ALGA O] AT (O ;22U F2 PoIet] Asflconst © = krong YODE AT S5 Yrt
AL £ 713, Tefe) 713, PUAORNHANE ER £ 4 YUk 018 50+, 49} 22 4 2918 71 39
QiAbt2 spaEick

SHE 2] P ¥4 012 UK KeywordsBo]ck,

julia> else = false

ERROR: syntax: unexpected "else"

julia» try = "No"

ERROR: syntax: unexpected "="

QUIC/L Zets 227t Zow SUsH AFBoHUulia: NFC BZS A8,
QUIE B2 (U +025B : 2telo] A2 U3 )2 u(U + 0085 : Dfo]22 BB)%: o]g} Helrt 2L T2~

.9 7e X T2 AR vield SRS AMg s el


http://www.fileformat.info/info/unicode/category/index.htm
http://www.fileformat.info/info/unicode/category/index.htm
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BT BF 0152 theAe AAsT Hol Relt RStk B et E71¥(UpperCamelCase: BE Tol)

HAZAE HWRAZ BY))S AT
8491 (12 29] 0|20 WRS Wz Y},

in-place &42] 0|52 |2 BT



Mot BE A5 21 23] Qto] 9lof 712201 24 @ Aolrt. Z2jof oA ol 2 Zhe] BHE 22} Z2|0]E]H (nu-
u
u

=S|
& A2 B FTA] B 1 ZHS 71 228 28/ (numeric literals) 2

m{m
iC)
Mo
i)
oX
1
o

meric prlmltlves

e ‘,111'—}. olE 501,12 g+ 2EHolL, 1.02 B35 24 Q0 HHOIT; 0|52 t=22] 4 Ho[H2]S 244 (object) 2

27t EF T @4tofl 21 hgsto] Eejoprt HM o] Qi AUS 8] 4 JEE Tty 2I7IR E2jote ¢
At< (Arbitrary Precision Arithmetic)& AZEJojZ o2 x]sl=t]|, SIEojA BoZ2 = 8% 0= A JE

OFF AU 2212 20 iAoz A5 tha £4 "ot

=< S2oolA 7|22 0 2 2|5k Efjolt:

F7HHo 2 5450 Relee SloA AGE BteJol] 7125t TEoiRT. 2E VIR 2] §HYS2 fstaL, g &0l

7Fs3t type promotion system S0 ZFR-EA JE22-80] 715351

julia> 1

1

15



16
BY | Rsom |wEs | Hiy | HAw
Int8 X 8 =27 2"7-1
UInt8 8 0 2°8-1
Int16 X 16 -2°15 2"15 -1
UInt16 16 0 2"16 -1
Int32 X 32 -2°31 2731-1
UInt32 32 0 2732 -1
Int64 X 64 -2°63 2°63 -1
UInt64 64 0 2°64 - 1
Int128 X 128 -27127 27127 - 1
UInt128 128 0 27128 - 1
Bool N/A 8 false (0) | true (1)
BY | ¥YE [ HES
Floatl6 | half 16
Float32 | single | 32
Float64 | double | 64

julia> 1234

1234

CHAPTER 4.

M4 2| YL S AAH0] 328]E OF|EIHQ1] B2 648]E o7 |l QIX|of wet 2

# 32-bit system:

julia> typeof(1)

Int32

# 64-bit system:

julia> typeof(1)

Int64

Z2]0}9] LB B A Sys . WORD_SIZEL: s A]AEI0] 326 EQIZ] 48] EQIZ] ey

# 32-bit system:

julia> Sys.WORD_SIZE

=
L

rlr

19
et

fjo
rot

e

A
T

o8

=
[=)

A

A
T

ox

A
o


https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Single_precision_floating-point_format
https://en.wikipedia.org/wiki/Double_precision_floating-point_format

41. 3

>

32

# 64-bit system:
julia> Sys.WORD_SIZE

64

0|

Z2|ot

rlr

# 32-bit system:
julia> Int

Int32

julia> UInt

UInt32

# 64-bit system:
julia> Int
Int64

julia> UInt

UInt64

32B|EZ BHY &
# 32-bit or 64-bit system:
julia> typeof(3000000000)

Int64

julia> ox1

0x01

julia> typeof(ans)

UInt8

julia> 0x123

0x0123

julia> typeof(ans)

27}l AT

QA 64| E 2 BF0| 7}

(10

=
[S

o



18 CHAPTER 4. F4 BE 44

ox

A
o

UIntl6

julia> 0x1234567

0x01234567

julia> typeof(ans)

UInt32

julia> 0x123456789abcdef

0x0123456789abcdef

julia> typeof(ans)

UInt64

julia> @x11112222333344445555666677778888

0x11112222333344445555666677778888

julia> typeof(ans)

UInt128

fol

olutzio 2
X0

£Q

L 16704 B4 2EYS 2 1), B8 Y23 BIAP] Bk ARESS 1Y Blo|E ABA(fixed
numeric byte sequence) & E&H37] 93 163148 2= Fo] 17| W20, 99} 20| BE7} g H4gol 16714 el

ZYAPIEE shgict.

ans 7ttty A9y gHgollM

7
gHgollM= A2 dggo] rd ZlolZhes AS & 4

Zelole 249 8314 2R E

rot
)
10
ol
ol
Kl

julia> 0b10

0x02

julia> typeof(ans)

UInt8

julia> 00010

0x08

julia> typeof(ans)
UInt8




julia> 0x 1111222233334444

Ox 1111222233334444

julia> typeof(ans)

UInt128

As for hexadecimal literals, binary and octal literals produce unsigned integer types. The size of the binary data item
is the minimal needed size, if the leading digit of the literal is not 0. In the case of leading zeros, the size is determined
by the minimal needed size for a literal, which has the same length but leading digit 1. That allows the user to control

the size. Values which cannot be stored in UInt128 cannot be written as such literals.
Binary, octal, and hexadecimal literals may be signed by a - immediately preceding the unsigned literal. They produce

an unsigned integer of the same size as the unsigned literal would do, with the two's complement of the value:

julia> -0x2

Oxfe

julia> -0x0002

oxfffe

Y4 22 712 2 5§ g Hoigh2 typemindt typemax g4

i

5o & 4 Uk

julia> (typemin(Int32), typemax(Int32))

(-2147483648, 2147483647)

julia> for T in [Int8,Int16,Int32,Int64,Int128,UInt8,UInt16,UInt32,UInt64,UInt128]
println("$(lpad(T,7)): [$(typemin(T)),$(typemax(T))1")
end
Int8: [-128,127]
Int16: [-32768,32767]
Int32: [-2147483648,2147483647]
Int64: [-9223372036854775808,9223372036854775807]
Int128: [-170141183460469231731687303715884105728,170141183460469231731687303715884105727]
UInt8: [0,255]
UIntl16: [@,65535]
UInt32: [0,4294967295]
UInt64: [0,18446744073709551615]

UInt128: [0,340282366920938463463374607431768211455]
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ox

A
o

typeminT} typemaxZ} Al Fots P52 T4 tI7HHSS BRI 22 B2 7RI (9] oflAlollA] A& for loops, Strings,
Interpolation?t Z-2 BHEL of2] AJHs12] L2 ZIEo|t}. d=fu} oFho] 2 ey 2|Alo] QIttH olshstr] ¥ 2417t

gl 2ol )

iy

oHE (Overflow) =2t
Z2|otoME 20J21 EFQo|A BT £ 9l S HolAA HH thS2t Zo] F0i%1 HE HlojuR] = (wraparound)
3 Bojgn

julia> x = typemax(Int64)

9223372036854775807

julia> x + 1

-9223372036854775808

julia> x + 1 == typemin(Int64)

true

{1227 W 2of|, Juali F Q] AL AP LA GLTA S 4 QlTh QHEERTVIUE £ e ZE2IHME LHEERE
YA o2 HI3st= o] "aol); 1 A7} ofu2lH Arbitrary Precision ArithmeticOllA BigIntEIQIS AlRsH=
=

pa)
o
S\
o

Lhedl B o2l
3

a9t (div 8140 5 71X ollelxjel 2971 ik 022 7], 12)2 AREF} B8E 4 9l Ha9

o
a
HAGHtypenin) -12 Uit Zoleh, 5 710 4 bivideErrorS SR % Loix] A4 G4:( rendt nod) & WA

lo

DH7HEH 7T 0 W, DivideErrorS @RI} throw).

julia> 1.0

1.0

julia> 1.

1.0

julia> 0.5



https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Scientific_notation#E-notation

0.5

julia» .5

0.5

julia» -1.23

-1.23

julia> 1el0

1.0e10

julia> 2.5e-4

0.00025

9ol LH ZTHe BE Float64EI0] ZHSOICE Float3 RS2 etfAl f

i
[¥
rg
1)
1
ot
S
30,
fin)

julia> 0.5f0

0.5f0

julia> typeof(ans)

Float32

julia> 2.5f-4

0.0002510

P52 @ Float eI O R WBT 4 k.

julia> Float32(-1.5)

-1.5f0

julia> typeof(ans)

Float32
1632 BREE 25453 2|HE2 FR6HAIT Base-2 0] 0] pE Al B3P Float64BHJo ATt ZHs-altt:

julia> 0x1p@

1.0

julia> 0x1.8p3
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ofrt
P
ox
A

12.0

julia> 0x.4p-1
0.125

julia> typeof(ans)

Float64

168|E Q] YU L7} Huto]l B= A 42 (Half-precision floating-point) (Float16) & A LS| Z|9t AAHS Q)5 Float325 AMRSH

ATEQ0]2 TR 0jQlTh

julia> sizeof(Float16(4.))
2

julia> 2+Float16(4.)

Float16(8.0)

I

rlr

4 7RA2 29 4 ok

julia> 10_000, 0.000_000_005, oxdead_beef, 0b1011 0010
(10000, 5.9e-9, @xdeadbeef, 0xb2)

Iy
oot

2 92 07} 24 002 Bajk & /10 02 7RITh 1 58 22 02024 ZA|Th 123} Zo] bitstring
=2

julia> 0.0 == -0.0

true

julia> bitstring(0.0)

julia> bitstring(-0.0)

"1 "



https://en.wikipedia.org/wiki/Signed_zero

42. 5258 0% ARG e

Float16 | Float32 | Float64 | O] g

Inf16 Inf32 Inf positive infinity | 2E {315t BH= A5 ALvct 3 7

-Inf16 -Inf32 -Inf negative infinity | 25 {355t B= ALH A4yt 2He 71

NaN16 NaN32 NaN not a number ofH BE A5 A4ts 22 E2
0|¢} Z2 FololA] Y2 BE ALY gHE0] A2 T2 A4of thelA &A1& thid diofl& v|w ¢I4He Fast
[EEE 754 standardo]l 2, ojX 9] & AL AL52 ojH At Attol] Q5 Al & & ok

julia>

0.0

julia>

Inf

julia>

-Inf

julia>

Inf

julia>

NaN

julia>

Inf

julia>

-Inf

julia>

Inf

julia>

NaN

julia>

Inf

1/Inf

1/0

-5/0
0.000001/0
0/0

500 + Inf
500 - Inf
Inf + Inf
Inf - Inf
Inf * Inf

23


https://en.wikipedia.org/wiki/IEEE_754-2008
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julia> Inf / Inf

NaN

julia> 0 * Inf

NaN

typeminit typemax @ BE 243 BU0E 80| 7Hs6ith:

julia> (typemin(Float16),typemax(Float16))
(-Inf16, Inf16)

julia> (typemin(Float32),typemax(Float32))
(-Inf32, Inf32)

julia> (typemin(Float64),typemax(Float64))

(-Inf, Inf)

RE U252 25 447 FEHiRE PeotA BT £ Qrh. 12|11 JWRA s U2 FE F AYPS BF ApHeR
B 7H5SH A4t QutE EojA Q=] & =R Tt Qi wetbA o]E 8l Al4t7] YA 2 (machine epsilon)ol2h= 7HE0]
ZU5HA =it

Zelobe epseh 212 ABUCE O] 1,07 1.0 THS 02 2 BA /5T 15 247 2o A2 Tk

julia> eps(Float32)
1.1920929f-7

julia> eps(Float64)

2.220446049250313e-16

julia> eps() # same as eps(Float64)

2.220446049250313e-16

Q] FEOA U= ZHE2 Float64St Floate4gt S04 Hio|UH2]|2 HE7|SiS wff, 2.0™-231 2.07-5

Sy= 25 77} LEHiT). eps
goe 5 2504 245 AR 28 25 e, ol he 1.00] ohzt 0330 ghat 201 gF HER ol 203
kel A=l wreteltt. 1 B2 epx(x) 2] HHRGE2 xoF 22 BHIOIL, xreps(x) £ xETH 2 xHFR Fof] fl= 2o 7hs o
7525y deE 500


https://en.wikipedia.org/wiki/Machine_epsilon

julia> eps(1.0)

2.220446049250313e-16

julia> eps(1000.)

1.1368683772161603e-13

julia> eps(le-27)

1.793662034335766e-43

julia> eps(0.0)

5.0e-324
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julia> x = 1.25f0

1.25f0

julia> nextfloat(x)

1.2500001f0

julia> prevfloat(x)

1.2499999f0

julia> bitstring(prevfloat(x))

"00111111100111111111111111111111"

julia> bitstring(x)

"00111111101 00 000"

julia> bitstring(nextfloat(x))

"0011111110100000000 00000001"
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IEEE 754

REo|T},

L
=

glow F}4R 7t 3 Aa(slolde 9o 0)2 By 5

gtol 24

ozl

o A5 (low-level) 7

o
L

13 7]

ot 2Lt 1 o

olk:

™
ol
Nfio

IEEE 754-2008 StandardO]X|gt Q2 o0|c}.

3 s o=

Al 7}

U

o|J
N

o
Bl

jo

il
i

2 John D. Cook's E21 =

ZF7HA] Aol

tof o]et HEofM 11.9] A7

Aol &5

o

s o2 gnt.

9|

atolrt.

r
-

s

9

+ Bruce Dawson9] series of blog posts on floating-point numbers& 3

David Goldberg®] =2 What Every Computer Scientist Should Know About Floating-

Soll tisiA &=
Point ArithmeticS gl

B 27

= 7to] Eot

Sif

¥ O RASE 243, 23] AEL0MS £

B
=
AP0l ofHA]"Z2 &2 William Kahan9] collected writings&

T

S
i

5 2479] AL 27 L 2Al of

s

I8

wir

o] o AZITHH An Interview

A
o

o

with the Old Man of Floating-Point& Q7] B},

GNU Multiple Precision Arithmetic Library (GMP)} GNU

f, 22lot=

9|

o g 9

14Tt BigInte}BigFloatErRle Z2jotolA

5]

MPFR LibraryS 242} 2t (wrapping)

o},

1

o%

i AHE =2

9|

tt271 9

AbstractStrings=

L
=

I, parse

all "3/ d2t s

B2 9571 9

O] Z]H, type promotion and conversion mech-

=
=2

HUE Erjo]

anismE&of ZL-FA o

julia> BigInt(typemax(Int64)) + 1

9223372036854775808


https://en.wikipedia.org/wiki/IEEE_754-2008
https://standards.ieee.org/standard/754-2008.html
https://www.johndcook.com/blog/2009/04/06/anatomy-of-a-floating-point-number/
https://www.johndcook.com/blog/2009/04/06/numbers-are-a-leaky-abstraction/
https://randomascii.wordpress.com/2012/05/20/thats-not-normalthe-performance-of-odd-floats/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf
https://en.wikipedia.org/wiki/William_Kahan
https://people.eecs.berkeley.edu/{~}wkahan/
https://people.eecs.berkeley.edu/{~}wkahan/ieee754status/754story.html
https://people.eecs.berkeley.edu/{~}wkahan/ieee754status/754story.html
https://gmplib.org
https://www.mpfr.org
https://www.mpfr.org

43 g HE= A 27

julia> parse(BigInt, "123456789012345678901234567890") + 1

123456789012345678901234567891

julia> parse(BigFloat, "1.23456789012345678901")

1.23456789012345678901

julia> BigFloat(2.0766) / 3
2.459565876494606882133333333333333333333333333333333333333333333333333333333344e+19

julia> factorial(BigInt(40))

815915283247897734345611269596115894272000000000

I, 712 EFQlY} BigInt/BigFloatZFe] BA]A & ¥k (type promotion)2 A5 O 2 0|2 0{R]|R] Y1 HIEA| HA|ZHO 2

2] &lojo} gtk

julia> x = typemin(Int64)

-9223372036854775808

julia> x = x - 1

9223372036854775807

julia> typeof(x)
Int64

julia> y = BigInt(typemin(Int64))

-9223372036854775808

julias>y =y - 1
-9223372036854775809

julia> typeof(y)

BigInt

2HO| H|EL)Q 2t B E L setprecision®t setroundinggE SETO2ZH AT &

BigFloatElQJoflA 7|8 HUL (7}
1 44o] A4 ] "o}, EY B39 IToMT HUES 2ted S wEsty] eiME

oo, o ¥ o2H o]0l

PECEEIE BEEICE S

i
fol
U
3
o

julia> setrounding(BigFloat, RoundUp) do

BigFloat(1) + parse(BigFloat, "0.1")
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end

00 000 003

1.100 0 0

julia> setrounding(BigFloat, RoundDown) do
BigFloat(1) + parse(BigFloat, "0.1")
end

1.099999999999999999999999999999999999999999999999999999999999999999999999999986

julia> setprecision(40) do
BigFloat(1) + parse(BigFloat, "0.1")

end

1.1000000000004

44 Y 2AHE Al

B 59 4ot Alu #AlE Z4T5H 231517] 9, E2j0k= HET $29 25 E BiE 3ol Q12W F Atol9] #AI7}
B 1Y o)k TN o BHG TS 2ToA TECE

julia> x = 3

3

julia> 2x™2 - 3x + 1

10

julia> 1.5x"2 - .5x + 1

julia> 272x

64

The precedence of numeric literal coefficients is slightly lower than that of unary operators such as negation. So -2x
is parsed as (-2) * x and v2x is parsed as (v2) * x. However, numeric literal coefficients parse similarly to unary

operators when combined with exponentiation. For example 2"3x is parsed as 2*(3x), and 2x"3 is parsed as 2*(x"3).

2219 2lHE2 23571 9l AN E Al (coeffilents) 2 2H5E 4 Ik

julia> 2(x-1)"2 - 3(x-1) + 1

3



44, 238 JHY A% 29

M 2Q : WA (implicit) 02 AFRH 218 eI Al49 Al otz JAll(+)at UAl(/,\, //) 22 o]2 drrztect
=5ULh ol §50] 1/2im12 -0.5imat 211, 6//2(2+1)+= 1//13 25U

AL BE BHNL W4 E3 AL YAstol, FAVIE QIOIE WA 710) FO2 NS BET £E rk

julia> (x-1)x

6

JeiU E TS WASAU BBA Yol $AE R AL ALE A8Y £ ik

julia> (x-1)(x+1)

ERROR: MethodError: objects of type Int64 are not callable

julia> x(x+1)

ERROR: MethodError: objects of type Int64 are not callable

22 QAT BB B £33 2EIYo| ofd BHASS BE 320t §40] tfH42 QAEITHANE

2 flaliME FunctionsE FASI=S sHAY). J2iM &+ 712] B¢ B& A% Jle gto] 47t ohg S Yie o2t
i

hd

QoA gt FHA Fetaite £ ALY dl Ve AAAE FHE £Y 5 UAES SR TA ¢ 7HA] Yotor &
A

294 35
YR ASE PG YL 1634 F4 EBL £5 2479 F5PY B0t T 42F 2lEY 2L 350| 42

+ 1674 2IER B oxfri £21F 2EY 07} w4 xifo] B2 AN

ot

4
¥0

25 247 26 B4 10102 $318 25 10] ¥4 eloo] A A2 MY £ 90 ol 7t oPd ES 2

« The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5 multiplied

by the variable f22.
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- A PSR ARl BAAIM 2219 2lHE T30l eEe 7L FWEtRH Y R34y 2EHoln

» Expressions starting with a numeric literal followed by f are always 32-bit floating-point literals.

Unlike E, which is equivalent to e in numeric literals for historical reasons, F is just another letter and does not
behave like f in numeric literals. Hence, expressions starting with a numeric literal followed by F are interpreted as

the numerical literal multiplied by a variable, which means that, for example, 1.5F22 is equal to 1.5 * F22.

45 2HZE 011

F2jo}t o £33t Efgjolut Xoj w4 Efglol met el 00l 18 2lHst: B4 ABF,
e | 43

zero(x) | xEFJOILt ¥4 xO BHIS] 2]EE 0

one(x) | xErJOIL ¥4 xO] EFQI9] 2|EE |

Examples:

julia> zero(Float32)

0.0f0

julia> zero(1.0)

0.0

julia> one(Int32)

1

julia> one(BigFloat)

1.0
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https://ko.wikipedia.org/wiki/%EC%82%B0%EC%88%A0#%EC%82%AC%EC%B9%99%EC%97%B0%EC%82%B0

32

e ANAE TR 7S oA

julia> 1 +2 + 3

6

julia> 1 - 2

-1

julia> 3%2/12

0.5

52 H|E A4kt

HIE A BE 78 Y4 Erele Agdtk

Expression | Name

~X HE B3

X &y H|E and ¢4t

X1y H|E or A4

x ¥y H|E xor ¥4t (exclusive or)

X >y logical shift right

X D>y arithmetic shift right

X <Ky logical/arithmetic shift left
HIE QIAIRIZ FE3 7Tkt oflAck

julia> ~123

-124

julia> 123 & 234

106

julia> 123 | 234

251

CHAPTER 5. At& Glitut 7|2

oot
4


https://ko.wikipedia.org/wiki/%EB%B9%84%ED%8A%B8_%EC%97%B0%EC%82%B0
https://en.wikipedia.org/wiki/Logical_shift
https://en.wikipedia.org/wiki/Arithmetic_shift

53, QHIOJE AR} 33

julia> 123 vV 234

145

julia> xor(123, 234)

145

julia> ~UInt32(123)

oxfffffféa

julia> ~UInt8(123)

0x84

53 <YJHIo|E ALtA}

@AAe} BE QAR Do theste HolE ANAE YUtk HOIE ANARE WAl Gt B AN
AR AN 5 AT A S W40l AFFUTH A0l FARE V1R GAR} 715 Q20] 5 BUORK WS
%

X += 35 x = x + 39 22 2o} Pyck:

julia> x = 1

1

julia> x += 3

4
julia> x

4

7k At [H|E A4tRtol] th S5k HH0IE H4tAL= oflieh 2 uth:
+= —= x= [= \= = %= "= &= = V= >>>= >>= K=

Note

Julias o] Tjet EHUS B1TY] w20, YHIO|E HAAT} W40 EFQlE BHE 4 Utk

julia> x = 0x01; typeof(x)

UInt8

julia> x *= 2 # Same as x = x * 2
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julia> typeof(x)
Int64

54 BiGOIM ] ALH("dot” ALEAY)

"9} 22 BE o2 QAR WG] U QA st "dot” AL .7t Stk wRHA [1,2,319) BE A4S AAIE st

pn

ATk [1,2,3] ~ 30] obUg} [1,2,3] .~ 32 ZAJsHo} Sht}, 122 T ARREE AFRE 4 QITH(. 1),

O v

julia» [1,2,3] .~ 3
3-element Array{Int64,1}:
1
8

27

julia> .![true,false,true]
3-element BitArray{1}:
0

1

0

3ot IHHCZ a3 .~ be (M).(a,b)R NAEL, oJ7|A & broadcast ¥AS Stk broadcast QAN viGat Azt
v Gt G (2 L0] E2te F)2 948 Aito] 7155 22 24 BigR "HAH3]" HIHET(0E E01 row WE S col-
umn WE7E S01QH FH S AJGSH). E3t "dot” AR A TRE "dot” AAMRIS AYtsto] BHE RS ST &

AAEIQTE THF 2 (% A”2 .+ sin.(A) (2L @. macro)S AHESI0] @. 2A"2 + sin(A)E AAISICHHE) Julia: A9 2E
4o thsl 2a™2 + sin(a)E A4S f. (. (x))Z2 nested dot 2% O] FAS7t o7 TR0l x .+ 3 .* x."2%}

f.(g.(
(1) (.G, ()., DNES G+ B2 AENE G54 o7t A =

Toi

L}OF7}A] in-place §8HE THY! AAF .=of thall a .+= b (or @. a += b)Q} ZL2 "dot" UTO|E HARIEL a .= a .+ b2

-
o
e

S
it

C}(are parsed).

dot PARHE 282t MOl AAROIME ERE

H.I
e
3]
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2
ju
fun
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)>
&
0]
x
=)
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)>
s
i
oX
10
3
i)
i)
=
G
®
=
g
0

[AeC, BeD]S AlLISITH

dot PAXE £7HY BlEYT} B8t 7;% SN0 254e oplE 4 k. oIS 5

=01 1
s}alsta] oit. webd old By 2|YUst ou), Btushll AL Al oo 2 Bwig Wals| sokaict,
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< 2tk

<=, = AL 2ot
> 3t

>=, =z 2 2ot

ofh oA = ABRIS &

julia>

true

julia>

false

julia>

true

julia>

true

julia>

true

julia>

false

julia>

true

julia>

true

julia>

1==1
1==2

11=2
1==1.0
1<2

1.0 > 3
1>=1.0
“1<=1

-1<= -1

35
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true

ORR|R} 722 T fRlEnt STRol2), AA| AldtollA o =] 29 BakE of7]

true

false

false

ol2fgt ZAl= E3] HiE S tHE W SHIE Al

false

false

false

juliay -1 <= -2

julia> 3 < -0.5

CHAPTER 5. At& Aitat 7]1E
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A BELAMES 22 9|9 BIES ¥l@sle WACR och WY AAL IEEE 754 standard®] Fo] wat

Inf L NaNot RIS AIQJG SR 0t 331, 7] ZpAlaHe 2

Inf = NaNeh 2HA1S A28 8T AT, 2p7] ATk P,

Nl &= ZPAIS E3HSH 7 Ofw 49 2] 91, IAE 1, A% Yk,

1w

julia> NaN == NaN

julia> NaN != NaN

julia> NaN < NaN

julia> NaN > NaN

et
!
i)
o

julia> [1 NaN] == [1 NaN]

false

s
e


https://ko.wikipedia.org/wiki/IEEE_754

5.5. Hl2 A4t
IS grehgho] 31 24
isequal(x, y) | xSty 7t Z& uj
isfinite(x) x7t fetet 4 o
isinf(x) x7t ket g o
isnan(x) x7t X7} opd
JuliaE SHAIGHAE E48 GolE HZALS AHEE 4~ JIEE S+ X[ttt

isequalof|A] NaNO] A& ZThal L2T}:

julia> isequal(NaN, NaN)

true

julia> isequal([1 NaN], [1 NaN])

true

julia> isequal(NaN, NaN32)

true

mol‘
£
b
>
o
et
>
1)
a

isequal2 +01} -08 &S

julia> -0.0 == 0.0

true

julia> isequal(-0.0, 0.0)

false

37

49 signedt} unsigned &2 A4 AHo]9] ] A4 7ITHETY. Juliak EFY FE §lo] o]F Z1E0] 2 2H-5oA| Basict

M2 CF2 E1oIA isequal@ AHB3HE == BEBHAl SIOI9ILE. TAI0] AAISHY] ERRIOIAN SUHS HOISHT Arted ==

methodS A 9|5tH =t 07]0]] hash methodE 2 9]5}H isequal(x,y)2 hash(x) == hash(y)&

B A4t 0]0j A7

F29] Aoj7t 2| FEHA] FAIT, Python® Bl It ZHAE Bl A4S 0]ofE 4 Sl

julia> 1 <2<=2<3=3>2>1==1<31=5

true

greketct.


https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Comparison_operators
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Bl A oloj7] i BE TS ZBaH Sk IR AL 0]ojA7] i 8aS AFRB10] AN B At E0] 283}, AA
88 73 SUsIC). 27l Dohe 27t 28402 oflge 2T S2o] ke Zolch Toj2 e < A

03} 1 Atojof] =210l theh /A 3le PB= vkl

Note the evaluation behavior of chained comparisons:

julia> v(x) = (println(x); x)

v (generic function with 1 method)

julia> v(1) < v(2) <= v(3)
2
1
3

true

julia> v(1) > v(2) <= v(3)

AHA Zatol| A FIHgo] Rt AP S BT 4 Rl 01 S8l v(1) < v(2) 8& v(2) <= v(3)Z AIIHS HETH 2
G + 7|12 Z2 Y Adojet Fef Alrt &M= 0l2] ol S 4 Qitte 2 =Y 4 Qi

kA L AL 0]0j2A 710l = ALt £4171 S8 ALHOIA]: AE™)S SHA] DAL o] B8-S Zotskal HOFeitH &&
AARLE 28512t (Short-Circuit Evaluationg Zralsta})

7% g5
Julias 3] AXTS 912 49 HAAES VEHO 2 XA, 0] AL M THE EIYS) £AH(Y4, A4, fels 57t
].

o] gk B dot 512 A3l of|E £0] sin. (A)E array?] & A9l ¥49] singtS F3ict.

Pov
f
o
>
3
o
fru
>
fo
S
o
pu
in}
i
i
gt
re
.
X
o
o
>

fo
o

=

ICH5toIArzL + OF -2 025 A Al2 8= AL, AT|0|E AlAI}++) 9t 1&517] Sjs] &

o = =

3¢ 1r1ght associativity #2lof] Wzt 128 :=_'1§|9_}E}(o1]1\] W-aZ V(V(-a)) 2 BA).

-‘ .I

The operators +, ++ and * are non-associative. a + b + c is parsed as +(a, b, c) not +(+(a, b), c). However, the fallback methods for +(a,
b, ¢, d...) and *(a, b, ¢, d...) both default to left-associative evaluation.


https://en.wikipedia.org/wiki/Operator_associativity

=5 AR Zshd
=9 . followed by :: Y=
A& ~ el=k-
o ALt +- ezl
Bitshifts <KL > Az
= /1l 9z
TR [« /%&£ PEY
SiA, A +- 1V Az?
2y 2z
=4 > R
29 <! Sl
Bla HA > K >=K= == === I= l== A5t 9le
Aol 55 && followed by || followed by ? a=
Pair = o=x
o =4z == [= [[= \= "= i= %= = &= V= <= >>= o= | QER

BE Julia QAR X490 228 B Aty o2 il o] AT I T E skl src/julia-parser.scm

Base.operator_precedences S3liA% 2429E AT £ ot WHEgo] g2+ o fAeA/HH &0

julia> Base.operator_precedence(:+), Base.operator_precedence(:*), Base.operator_precedence(:.)

(11, 13, 17)

julia> Base.operator_precedence(:sin), Base.operator_precedence(:+=), Base.operator_precedence(:(=)) # (Note the

<s necessary parens on " :(=)")

Q12 Base.operator_associativity2 &HQ1st 4~ Q)t}:

julia> Base.operator_associativity(:-), Base.operator_associativity(:+), Base.operator_associativity(:")

(:left, :none, :right)

julia> Base.operator_associativity(:®), Base.operator_associativity(:sin), Base.operator_associativity(:-)

(:left, :none, :right)


https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm
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5.7 Numerical Conversions

Julia supports three forms of numerical conversion, which differ in their handling of inexact conversions.

« BI7IYH T(x) B convert(T,x)= xS type 19| 41O 2 HEHSIT]

Qe 71 7Pt o2 Uehye, o= & 52 89| 2

2
)
I

— BI9F 17 4 typeo|®, xS T type@ 2 LIERS 4 912 ), TnexactError} 2gdict,

s

o x % T= 3 xE ¥ 27n0]] 5 5 (congruent to x modulo 2°n)Ql, type T X470 2 WSS} converts an

integer x to a value of integer type T). 6J7]4 n& T Q19| H|E 4:0]t}. In other words, the binary representation

is truncated to fit.

+ The Rounding functions take a type T as an optional argument. For example, round(Int,x) is a shorthand for

Int(round(x)).

The following examples show the different forms.

julia> Int8(127)
127

julia> Int8(128)
ERROR: InexactError: trunc(Int8, 128)
Stacktrace:

[...]

julia> Int8(127.0)

127

julia> Int8(3.14)
ERROR: InexactError: Int8(3.14)
Stacktrace:

[...]

julia> Int8(128.0)
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ERROR: InexactError: Int8(128.0)
Stacktrace:

[...]

julia> 127 % Int8

127

julia> 128 % Int8

-128

julia> round(Int8,127.4)

127

julia> round(Int8,127.6)
ERROR: InexactError: trunc(Int8, 128.0)
Stacktrace:

[...]

See Conversion and Promotion for how to define your own conversions and promotions.

Rounding &4

EES Ek shaig
round(x) round x to the nearest integer | typeof(x)
round(T, x) | round x to the nearest integer | T
floor(x) round x towards -Inf typeof(x)
floor(T, x) | round x towards -Inf T
ceil(x) round x towards +Inf typeof(x)
ceil(T, x) round x towards +Inf T
trunc(x) round x towards zero typeof(x)
trunc(T, x) | round x towards zero T




42 CHAPTER 5. At Olitm} 7|2 st
g% ek
div(x,y), x+y | truncated division; quotient rounded towards zero
fld(x,y) floored division; quotient rounded towards -Inf
cld(x,y) ceiling division; quotient rounded towards +Inf
rem(x,y) remainder; satisfies x == div(x,y)*y + rem(x,y); sign matches x
mod(x,y) modulus; satisfies x == fld(x,y)*y + mod(x,y); sign matches y
mod1(x,y) mod with offset 1; returns re(@,y] for y>@ or re[y,0) for y<0, where mod(r, y) == mod(x, y)
mod2pi(x) modulus with respect to 2pi; @ <= mod2pi(x) < 2pi
divrem(x,y) returns (div(x,y),rem(x,y))
fldmod(x,y) returns (fld(x,y),mod(x,y))
gcd(X,y...) greatest positive common divisor of x, y,...
lem(X,y...) least positive common multiple of x, y,...
g% ek
abs(x) x2] Aot
abs2(x) xJAg AlF
sign(x) x9 23, -1,0, 52 +15 0tgh
signbit(x) sign bitZ} 191X](true) £ 091%](false) Q12| gt
copysign(x,y) | a value with the magnitude of x and the sign of y
flipsign(x,y) | a value with the magnitude of x and the sign of x*y

For an overview of why functions like hypot, expm1, and loglp are necessary and useful, see John D. Cook's excellent

pair of blog posts on the subject: expm1, loglp, erfc, and hypot.

sin cos tan cot sec csc
sinh  cosh tanh coth sech «csch

asin acos atan acot asec acsc


https://www.johndcook.com/blog/2010/06/07/math-library-functions-that-seem-unnecessary/
https://www.johndcook.com/blog/2010/06/02/whats-so-hard-about-finding-a-hypotenuse/
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i ek
sqrt(x), vx square root of x
cbrt(x), ¥x cube root of x
hypot(x,y) hypotenuse of right-angled triangle with other sides of length x and y
exp(x) natural exponential function at x
expml(x) accurate exp(x)-1 for x near zero
ldexp(x,n) x*2”n computed efficiently for integer values of n
log(x) natural logarithm of x
log(b,x) base b logarithm of x
log2(x) base 2 logarithm of x
log10(x) base 10 logarithm of x
loglp(x) accurate log(1+x) for x near zero
exponent(x) binary exponent of x
significand(x) | binary significand (a.k.a. mantissa) of a floating-point number x
asinh acosh atanh acoth asech acsch
sinc  cosc
O] S 2 QRS SHLTH AR M2 atang 27HE B2 & 120 Ol atan20] thggith
2712 sinpi(x) & cospi(x)E sin(pi*x), cos(pixx)Qt AT B]L|T O HESt AUt AEE

47 g4 U9l SEY(radian)ThA E()8 AFSSIAW HolA dg BT ol S0] sind(0k X9 singt
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julia> 1+2im

1+ 2im

julia> (1 + 2im)*(2 - 3im)

8 + lim

julia> (1 + 2im)/(1 - 2im)

-0.6 + 0.8im

julia> (1 + 2im) + (1 - 2im)

2 + 0im

julia> (-3 + 2im) - (5 - 1im)

-8 + 3im

45
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julia> (-1 + 2im)"2

-3 - 4im

julia> (-1 + 2im)”"2.5

2.729624464784009 - 6.9606644595719im

julia> (-1 + 2im)~(1 + 1im)

-0.27910381075826657 + 0.08708053414102428im

julia> 3(2 - 5im)

6 - 15im

julia> 3(2 - 5im)"2

-63 - 60im

julia> 3(2 - 5im)"-1.0

0.20689655172413796 + ©.5172413793103449im

B9l 245 2|82 A5t T2l AL 27t 25RO R e 2SStk

julia> 2(1 - 1im)

2 - 2im

julia> (2 + 3im) - 1

1+ 3im

julia> (1 + 2im) + 0.5

1.5 + 2.0im

julia> (2 + 3im) - 0.5im

2.0 + 2.5im

julia> 0.75(1 + 2im)

0.75 + 1.5im

julia> (2 + 3im) / 2

1.0 + 1.5im

julia> (1 - 3im) / (2 + 2im)

-0.5 - 1.0im




julia> 2im"2

-2 + 0im

julia> 1 + 3/4im

1.0 - 0.75im

2B A47 AT 257} 2002 3/4in == 3/(4xin) == ~(3/4+im)7} El= A B 2 9},

B242 TR 93 7|2 g4vt Ala ek

julia> z = 1 + 2im

1+ 2im

julia> real(1l + 2im) # real part of z

1

julia> imag(l + 2im) # imaginary part of z

2

julia> conj(1 + 2im) # complex conjugate of z

1 - 2im

julia> abs(1 + 2im) # absolute value of z

2.23606797749979

julia> abs2(1 + 2im) # squared absolute value

5

julia> angle(l + 2im) # phase angle in radians

1.1071487177940904

01714 abs: UHO 2 o BA20] HUAZHS WHEISHIL, abs2i BA% YO B angle Bad

HHeoiy.

718 G4 BagoH Z Foso) Uk

julia> sqrt(1lim)

0.7071067811865476 + 0.7071067811865475im
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julia> sqrt(l + 2im)

1.272019649514069 + 0.78615137775742331im

julia> cos(1l + 2im)

2.0327230070196656 - 3.0518977991518im

julia> exp(1l + 2im)

-1.1312043837568135 + 2.47172667200481881im

julia> sinh(1 + 2im)

-0.4890562590412937 + 1.4031192506220405im

CHAPTER 6. 2449} 92]4

22 AN S a0l A Q) S0l9W MRS Wikl BA4L S00T Ak wHEIth o) 54 ned
sqrti -10] S012 2 -1 + 0im 0] S0} W -1 == -1 + 0in 0|0} AW} T} Lpor 2 SIS 4 STk,

julia> sqrt(-1)

ERROR: DomainError with -1.0:

sqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).

Stacktrace:

[...]

julia> sqrt(-1 + 0im)

0.0 + 1.0im

Hao] AYE G2 B44E 9 dis 2HE A4 B A¥A oz SAS HFof gith:

julia> a = 1; b = 2; a + bxim

1+ 2im

SHAITH AMY BASE UTE AL 2HSHA Pirh complexE AHGSHE 20| BA4E UE ) Z8Hololtk. 0]
BHET BT S A ALESHA) gerh

julia> a = 1; b = 2; complex(a, b)

1+ 2im

] 7}

8 S0A 270 Inft Nalg 40 E ALE:
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julia> 1 + Infxim

1.0 + Infxim

julia> 1 + NaNxim

1.0 + NaNxim

62 ®el

Juliag F+9 HIZ R4S B

julia> 2//3

2//3
200 2A} 25 948 71T iy,
julia> 6//9

2//3

julia> -4//8

-1//2

julia> 5//-15

-1//3

julia» -4//-12

1//3
wAe 227 M2 401 JHle FY5tT,
B2 E numerator®} denominatorgt-E &

julia> numerator(2//3)

2

julia> denominator(2//3)

3

Ll

DAL Q210 thslof Yosiof glon

rjo

fjo

zex) va et

o
aT

49

2150 2219}



50

julia> 2//3 == 6//9

true

julia> 2//3 == 9//27

false

julia> 3//7 < 1//2

true

julia> 3//4 > 2//3

true

julia> 2//4 + 1//6

2//3

julia> 5//12 - 1//4

1//6

julia> 5//8 = 3//12
5//32

julia> 6//5 / 10//7

21//25

julia> float(3//4)

0.75
QLS U4 HIRY T R4S A

julia> a = 1; b = 2;

julia> isequal(float(a//b), a/b)

true

fru
¥2

et

CHAPTER 6. 2449} 92]4

tHE, a == @0l b == 09! A< A|9)):
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julia> 5//0
1//0

julia> -3//0

-1//0

julia> typeof(ans)

Rational{Int64}

sizIgk 92l5014 Nang 5ol

julia> 0//0

ERROR: ArgumentError: invalid rational: zero(Int64)//zero(Int64)

Stacktrace:

[...]

Sa]2k E}Ql 27 AJAH](promotion system) 2 2 $17| TH2 E}RIO] 5219} A

julia» 3//5 + 1

8//5

julia> 3//5 - 0.5

2//7 + 4//7xim

3//10 - 3//5*im

julia> 1//2 + 2im
1//2 + 2//1xim

julia> 1 + 2//3im

1//1 - 2//3*im

rlr

0.09999999999999998

julia> 2//7 = (1 + 2im)

julia» 2//7 = (1.5 + 2im)

0.42857142857142855 + 0.5714285714285714im

julia> 3//2 / (1 + 2im)

5%

2
]

St
=

A
o
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julia> 0.5 == 1//2

true

juliay 0.33 == 1//3

false

julia> 0.33 < 1//3

true

julia> 1//3 - 0.33

0.0033333333333332993

CHAPTER 6. 2449} 92]4



Chapter 7

Strings

Strings are finite sequences of characters. Of course, the real trouble comes when one asks what a character is. The
characters that English speakers are familiar with are the letters A, B, C, etc., together with numerals and common
punctuation symbols. These characters are standardized together with a mapping to integer values between 0 and
127 by the ASCII standard. There are, of course, many other characters used in non-English languages, including
variants of the ASCII characters with accents and other modifications, related scripts such as Cyrillic and Greek,
and scripts completely unrelated to ASCII and English, including Arabic, Chinese, Hebrew, Hindi, Japanese, and
Korean. The Unicode standard tackles the complexities of what exactly a character is, and is generally accepted as
the definitive standard addressing this problem. Depending on your needs, you can either ignore these complexities
entirely and just pretend that only ASCII characters exist, or you can write code that can handle any of the characters
or encodings that one may encounter when handling non-ASCII text. Julia makes dealing with plain ASCII text simple
and efficient, and handling Unicode is as simple and efficient as possible. In particular, you can write C-style string
code to process ASCII strings, and they will work as expected, both in terms of performance and semantics. If such
code encounters non-ASCII text, it will gracefully fail with a clear error message, rather than silently introducing

corrupt results. When this happens, modifying the code to handle non-ASCII data is straightforward.

There are a few noteworthy high-level features about Julia's strings:

+ The built-in concrete type used for strings (and string literals) in Julia is String. This supports the full range
of Unicode characters via the UTF-8 encoding. (A transcode function is provided to convert to/from other

Unicode encodings.)

« All string types are subtypes of the abstract type AbstractString, and external packages define additional
AbstractString subtypes (e.g. for other encodings). If you define a function expecting a string argument, you

should declare the type as AbstractString in order to accept any string type.

« Like C and Java, but unlike most dynamic languages, Julia has a first-class type for representing a single
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character, called AbstractChar. The built-in Char subtype of AbstractChar is a 32-bit primitive type that can

represent any Unicode character (and which is based on the UTF-8 encoding).

« As in Java, strings are immutable: the value of an AbstractString object cannot be changed. To construct a

different string value, you construct a new string from parts of other strings.

» Conceptually, a string is a partial function from indices to characters: for some index values, no character
value is returned, and instead an exception is thrown. This allows for efficient indexing into strings by the
byte index of an encoded representation rather than by a character index, which cannot be implemented both

efficiently and simply for variable-width encodings of Unicode strings.

7.1 Characters

A Char value represents a single character: it is just a 32-bit primitive type with a special literal representation and
appropriate arithmetic behaviors, and which can be converted to a numeric value representing a Unicode code point.
(Julia packages may define other subtypes of AbstractChar, e.g. to optimize operations for other text encodings.)

Here is how Char values are input and shown:

julia> 'x'

'x': ASCII/Unicode U+0078 (category L1l: Letter, lowercase)

julia> typeof(ans)

Char

You can easily convert a Char to its integer value, i.e. code point:

julia> Int('x")

120

julia> typeof(ans)

Int64

On 32-bit architectures, typeof(ans) will be Int32. You can convert an integer value back to a Char just as easily:

julia> Char(120)

'x': ASCII/Unicode U+0078 (category L1l: Letter, lowercase)

Not all integer values are valid Unicode code points, but for performance, the Char conversion does not check that
every character value is valid. If you want to check that each converted value is a valid code point, use the isvalid

function:


https://en.wikipedia.org/wiki/Code_point
https://en.wikipedia.org/wiki/Character_encoding
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julia> Char(0x110000)

"\U110000"': Unicode U+110000 (category In: Invalid, too high)

julia> isvalid(Char, 0x110000)

false

As of this writing, the valid Unicode code points are U+8@ through U+d7ff and U+e@0@ through U+10ffff. These have
not all been assigned intelligible meanings yet, nor are they necessarily interpretable by applications, but all of these

values are considered to be valid Unicode characters.

You can input any Unicode character in single quotes using \u followed by up to four hexadecimal digits or \U

followed by up to eight hexadecimal digits (the longest valid value only requires six):

julia> "\u@'

"\@"': ASCII/Unicode U+0000 (category Cc: Other, control)

julia> "\u78’

'x": ASCII/Unicode U+0078 (category L1l: Letter, lowercase)

julia> "\u2200'

'V': Unicode U+2200 (category Sm: Symbol, math)

julia> '\U10ffff’

"\U1offff': Unicode U+10ffff (category Cn: Other, not assigned)

Julia uses your system's locale and language settings to determine which characters can be printed as-is and which
must be output using the generic, escaped \u or \U input forms. In addition to these Unicode escape forms, all of C's

traditional escaped input forms can also be used:

julia> Int('\0")

0

julia> Int('\t")

9

julia> Int('\n")

10

julia> Int('\e")



https://en.wikipedia.org/wiki/C_syntax#Backslash_escapes
https://en.wikipedia.org/wiki/C_syntax#Backslash_escapes
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27

julia> Int('\x7f")

127

julia> Int('\177")

127

You can do comparisons and a limited amount of arithmetic with Char values:

julia> 'A" < 'a

true

julia> 'A' <= 'a' <= 'Z'

false

julia> 'A" <= 'X' <= 'Z'

true

julia> 'x' - 'a

23

julia> 'A" + 1

'B': ASCII/Unicode U+0042 (category Lu: Letter, uppercase)

7.2 String Basics

String literals are delimited by double quotes or triple double quotes:

julia> str = "Hello, world.\n"

"Hello, world.\n"

julia> """Contains "quote" characters"""

"Contains \"quote\" characters"

If you want to extract a character from a string, you index into it:

julia> str[1]

'"H': ASCII/Unicode U+0048 (category Lu: Letter, uppercase)
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julia> str[6]

',": ASCII/Unicode U+@02c (category Po: Punctuation, other)

julia> str[end]

"\n": ASCII/Unicode U+000a (category Cc: Other, control)

Many Julia objects, including strings, can be indexed with integers. The index of the first element (the first character
of a string) is returned by firstindex(str), and the index of the last element (character) with lastindex(str). The
keyword end can be used inside an indexing operation as shorthand for the last index along the given dimension.
String indexing, like most indexing in Julia, is 1-based: firstindex always returns 1 for any AbstractString. As we
will see below, however, lastindex(str) is not in general the same as length(str) for a string, because some Unicode

characters can occupy multiple "code units".

You can perform arithmetic and other operations with end, just like a normal value:

julia> str[end-1]

": ASCII/Unicode U+002e (category Po: Punctuation, other)

julia> str[end+2]

": ASCII/Unicode U+0020 (category Zs: Separator, space)

Using an index less than 1 or greater than end raises an error:

julia> str[0]

ERROR: BoundsError: attempt to access String
at index [0]

[...]

julia> strlend+1]

ERROR: BoundsError: attempt to access String
at index [15]

[...]

You can also extract a substring using range indexing:

julia> str[4:9]

"lo, wo"
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Notice that the expressions str[k] and str[k:k] do not give the same result:

julia> str[6]

',": ASCII/Unicode U+002c (category Po: Punctuation, other)

julia> str[6:6]

>

The former is a single character value of type Char, while the latter is a string value that happens to contain only a

single character. In Julia these are very different things.
Range indexing makes a copy of the selected part of the original string. Alternatively, it is possible to create a view

into a string using the type SubString, for example:

julia> str = "long string"

"long string"

julia> substr = SubString(str, 1, 4)

"long"

julia> typeof(substr)

SubString{String}

Several standard functions like chop, chomp or strip return a SubString.

7.3 Unicode and UTF-8

Julia fully supports Unicode characters and strings. As discussed above, in character literals, Unicode code points
can be represented using Unicode \u and \U escape sequences, as well as all the standard C escape sequences. These

can likewise be used to write string literals:

julia> s = "\u2200 x \u2203 y"

"vox 3 y"

Whether these Unicode characters are displayed as escapes or shown as special characters depends on your terminal's
locale settings and its support for Unicode. String literals are encoded using the UTF-8 encoding. UTF-8 is a variable-
width encoding, meaning that not all characters are encoded in the same number of bytes ("code units"). In UTF-8,
ASCII characters — i.e. those with code points less than 0x80 (128) — are encoded as they are in ASCII, using a single

byte, while code points 0x80 and above are encoded using multiple bytes — up to four per character.
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String indices in Julia refer to code units (= bytes for UTF-8), the fixed-width building blocks that are used to encode
arbitrary characters (code points). This means that not every index into a String is necessarily a valid index for a

character. If you index into a string at such an invalid byte index, an error is thrown:

julia> s[1]

'V': Unicode U+2200 (category Sm: Symbol, math)

julia> s[2]
ERROR: StringIndexError("v x 3 y", 2)
[...]

julia> s[3]
ERROR: StringIndexError("v x 3 y", 3)
Stacktrace:

[...]

julia> s[4]

: ASCII/Unicode U+0020 (category Zs: Separator, space)

In this case, the character ¥ is a three-byte character, so the indices 2 and 3 are invalid and the next character's index

is 4; this next valid index can be computed by nextind(s,1), and the next index after that by nextind(s,4) and so on.

Since end is always the last valid index into a collection, end-1 references an invalid byte index if the second-to-last

character is multibyte.

julia> s[end-1]

: ASCII/Unicode U+0020 (category Zs: Separator, space)

julia> s[end-2]
ERROR: StringIndexError("v x 3 y", 9)
Stacktrace:

[...]

julia> s[prevind(s, end, 2)]

'3': Unicode U+2203 (category Sm: Symbol, math)

The first case works, because the last character y and the space are one-byte characters, whereas end-2 indexes into
the middle of the 3 multibyte representation. The correct way for this case is using prevind(s, lastindex(s), 2) or,

if you're using that value to index into s you can write s[prevind(s, end, 2)] and end expands to lastindex(s).
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Extraction of a substring using range indexing also expects valid byte indices or an error is thrown:

julia> s[1:1]

g

julia> s[1:2]
ERROR: StringIndexError("v x 3 y", 2)
Stacktrace:

[...]

julia> s[1:4]

ny "

Because of variable-length encodings, the number of characters in a string (given by length(s)) is not always the
same as the last index. If you iterate through the indices 1 through lastindex(s) and index into s, the sequence of
characters returned when errors aren't thrown is the sequence of characters comprising the string s. Thus we have
the identity that length(s) <= lastindex(s), since each character in a string must have its own index. The following

is an inefficient and verbose way to iterate through the characters of s:

julia> for i = firstindex(s):lastindex(s)
try
println(s[i])
catch
# ignore the index error
end

end

The blank lines actually have spaces on them. Fortunately, the above awkward idiom is unnecessary for iterating
through the characters in a string, since you can just use the string as an iterable object, no exception handling

required:
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julia> for c in s
println(c)
end
v
X
3
y

If you need to obtain valid indices for a string, you can use the nextind and prevind functions to increment/decrement
to the next/previous valid index, as mentioned above. You can also use the eachindex function to iterate over the

valid character indices:

julia> collect(eachindex(s))
7-element Array{Int64,1}:
1
4
5
6
7
10

11

To access the raw code units (bytes for UTF-8) of the encoding, you can use the codeunit(s,i) function, where the
index i runs consecutively from 1 to ncodeunits(s). The codeunits(s) function returns an AbstractVector{UInt8}

wrapper that lets you access these raw codeunits (bytes) as an array.

Strings in Julia can contain invalid UTF-8 code unit sequences. This convention allows to treat any byte sequence
as a String. In such situations a rule is that when parsing a sequence of code units from left to right characters are
formed by the longest sequence of 8-bit code units that matches the start of one of the following bit patterns (each

x can be 0 or 1):

o DXXXXXXX;
o 110XXXXX 1OXXXXXX;

e 1110xXXX 1OXXXXXX 1OXXXXXX;
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o 11110xxxX 1OXXXXXX 1OXXXXXX 1OXXXXXX;
o 1OXXXXXX;

e 11111xxx.

In particular this means that overlong and too-high code unit sequences and prefixes thereof are treated as a single

invalid character rather than multiple invalid characters. This rule may be best explained with an example:

julia> s = "\xc@\xa0\xe2\x88\xe2}"

"\xc@\xa0\xe2\x88\xe2|"

julia> foreach(display, s)

"\xc@\xa0': [overlong] ASCII/Unicode U+0020 (category Zs: Separator, space)
"\xe2\x88': Malformed UTF-8 (category Ma: Malformed, bad data)

"\xe2': Malformed UTF-8 (category Ma: Malformed, bad data)

"1': ASCII/Unicode U+@007c (category Sm: Symbol, math)

julia> isvalid.(collect(s))
4-element BitArray{1}:

0

0

0

1

julia> s2 = "\xf7\xbf\xbf\xbf"
"\ULfffff"

julia> foreach(display, s2)

"\U1fffff': Unicode U+1fffff (category In: Invalid, too high)

We can see that the first two code units in the string s form an overlong encoding of space character. It is invalid,
but is accepted in a string as a single character. The next two code units form a valid start of a three-byte UTF-8
sequence. However, the fifth code unit \xe2 is not its valid continuation. Therefore code units 3 and 4 are also
interpreted as malformed characters in this string. Similarly code unit 5 forms a malformed character because | is

not a valid continuation to it. Finally the string s2 contains one too high code point.

Julia uses the UTF-8 encoding by default, and support for new encodings can be added by packages. For example, the
LegacyStrings.jl package implements UTF16String and UTF32String types. Additional discussion of other encodings

and how to implement support for them is beyond the scope of this document for the time being. For further discussion


https://github.com/JuliaStrings/LegacyStrings.jl
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of UTF-8 encoding issues, see the section below on byte array literals. The transcode function is provided to convert

data between the various UTF-xx encodings, primarily for working with external data and libraries.

7.4 Concatenation

One of the most common and useful string operations is concatenation:

julia> greet = "Hello"

"Hello"

julia> whom = "world"

"world"

julia> string(greet, ", ", whom, ".\n")

"Hello, world.\n"

It's important to be aware of potentially dangerous situations such as concatenation of invalid UTF-8 strings. The
resulting string may contain different characters than the input strings, and its number of characters may be lower

than sum of numbers of characters of the concatenated strings, e.g.:

julia> a, b = "\xe2\x88", "\x80"

("\xe2\x88", "\x80")

julia> ¢ = a*b

g

julia> collect.([a, b, c])
3-element Array{Array{Char,1},1}:
["\xe2\x88']

["\x80"]

['v']

julia> length.([a, b, c])
3-element Array{Int64,1}:
1
1

1

This situation can happen only for invalid UTF-8 strings. For valid UTF-8 strings concatenation preserves all

characters in strings and additivity of string lengths.
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Julia also provides * for string concatenation:
julia> greet * ", " * whom * ".\n"

"Hello, world.\n"

While * may seem like a surprising choice to users of languages that provide + for string concatenation, this use of *

has precedent in mathematics, particularly in abstract algebra.

In mathematics, + usually denotes a commutative operation, where the order of the operands does not matter. An ex-
ample of this is matrix addition, where A + B == B + A for any matrices A and B that have the same shape. In contrast,
* typically denotes a noncommutative operation, where the order of the operands does matter. An example of this is
matrix multiplication, where in general A * B != B * A. As with matrix multiplication, string concatenation is non-
commutative: greet * whom != whom * greet. As such, * is a more natural choice for an infix string concatenation

operator, consistent with common mathematical use.

More precisely, the set of all finite-length strings S together with the string concatenation operator * forms a free

wu

monoid (S, *). The identity element of this set is the empty string, "". Whenever a free monoid is not commutative,
the operation is typically represented as \cdot, *, or a similar symbol, rather than +, which as stated usually implies

commutativity.

7.5 Interpolation

Constructing strings using concatenation can become a bit cumbersome, however. To reduce the need for these

verbose calls to string or repeated multiplications, Julia allows interpolation into string literals using $, as in Perl:

julia> "$greet, $whom.\n"

"Hello, world.\n"

This is more readable and convenient and equivalent to the above string concatenation — the system rewrites this

apparent single string literal into the call string(greet, ", ", whom, ".\n").
The shortest complete expression after the $ is taken as the expression whose value is to be interpolated into the

string. Thus, you can interpolate any expression into a string using parentheses:

julia> "1 + 2 = $(1 + 2)"

"1+2=3"

Both concatenation and string interpolation call string to convert objects into string form. However, string actually

just returns the output of print, so new types should add methods to print or show instead of string.


https://en.wikipedia.org/wiki/Free_monoid
https://en.wikipedia.org/wiki/Free_monoid
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Most non-AbstractString objects are converted to strings closely corresponding to how they are entered as literal

expressions:

julia> v = [1,2,3]
3-element Array{Int64,1}:
1
2
3

julia> "v: $v"

"v: [1, 2, 3]"

string is the identity for AbstractString and AbstractChar values, so these are interpolated into strings as themselves,

unquoted and unescaped:

julia> ¢ = 'x'

"x': ASCII/Unicode U+0078 (category L1: Letter, lowercase)

julia> "hi, $c”

”hi, X"

To include a literal $ in a string literal, escape it with a backslash:

julia> print("I have \$100 in my account.\n")

I have $100 in my account.

7.6 Triple-Quoted String Literals

When strings are created using triple-quotes ("""...""") they have some special behavior that can be useful for

creating longer blocks of text.

First, triple-quoted strings are also dedented to the level of the least-indented line. This is useful for defining strings

within code that is indented. For example:

julia» str = """
Hello,

world.

Hello,\n world.\n"
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In this case the final (empty) line before the closing sets the indentation level.

The dedentation level is determined as the longest common starting sequence of spaces or tabs in all lines, excluding

the line following the opening and lines containing only spaces or tabs (the line containing the closing is

always included). Then for all lines, excluding the text following the opening """, the common starting sequence is

removed (including lines containing only spaces and tabs if they start with this sequence), e.g.:

julia» """ This
is
3 test"""

This\nis\n a test"

Next, if the opening is followed by a newline, the newline is stripped from the resulting string.

"""hello"""

is equivalent to

hello"""

but

hello"™"

will contain a literal newline at the beginning.

Stripping of the newline is performed after the dedentation. For example:

julia> """
Hello,
world."""

"Hello, \nworld."
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Trailing whitespace is left unaltered.
Triple-quoted string literals can contain " symbols without escaping.

Note that line breaks in literal strings, whether single- or triple-quoted, result in a newline (LF) character \n in the
string, even if your editor uses a carriage return \r (CR) or CRLF combination to end lines. To include a CR in a

string, use an explicit escape \r; for example, you can enter the literal string "a CRLF line ending\r\n".

7.7 Common Operations

You can lexicographically compare strings using the standard comparison operators:

julia> "abracadabra" < "xylophone"

true

julia> "abracadabra”™ == "xylophone"

false

julia> "Hello, world." != "Goodbye, world."
true

julia> "1 +2=3"=="1+2=9%(1+2)"
true

You can search for the index of a particular character using the findfirst and findlast functions:

julia> findfirst(isequal('o'), "xylophone")

4

julia> findlast(isequal('o"), "xylophone™)

7

julia> findfirst(isequal('z'), "xylophone")

You can start the search for a character at a given offset by using the functions findnext and findprev:

julia> findnext(isequal('o'), "xylophone", 1)

4
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julia> findnext(isequal('o'), "xylophone", 5)

7

julia> findprev(isequal('o'), "xylophone", 5)

4

julia> findnext(isequal('o'), "xylophone", 8)

You can use the occursin function to check if a substring is found within a string:

julia> occursin("world", "Hello, world.")
true

julia> occursin("o", "Xylophon™)

true

julia> occursin(a", "Xylophon™)

false

julia> occursin('o', "Xylophon™)

true

The last example shows that occursin can also look for a character literal.

Two other handy string functions are repeat and join:

julia> repeat(".:Z:.", 10)

VAT Y SISV ANV A Y A Y SISV ANV A SV AT Y A

julia> join(["apples", "bananas", "pineapples"], ", ", " and ")

"apples, bananas and pineapples”

Some other useful functions include:

« firstindex(str) gives the minimal (byte) index that can be used to index into str (always 1 for strings, not

necessarily true for other containers).
+ lastindex(str) gives the maximal (byte) index that can be used to index into str.

+ length(str) the number of characters in str.
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« length(str, i, j) the number of valid character indices in str from i to j.
« ncodeunits(str) number of code units in a string.
« codeunit(str, i) gives the code unit value in the string str at index 1i.

« thisind(str, i) given an arbitrary index into a string find the first index of the character into which the

index points.
« nextind(str, i, n=1) find the start of the nth character starting after index i.

« prevind(str, i, n=1) find the start of the nth character starting before index i.

7.8 Non-Standard String Literals

There are situations when you want to construct a string or use string semantics, but the behavior of the standard
string construct is not quite what is needed. For these kinds of situations, Julia provides non-standard string literals.
A non-standard string literal looks like a regular double-quoted string literal, but is immediately prefixed by an
identifier, and doesn't behave quite like a normal string literal. Regular expressions, byte array literals and version
number literals, as described below, are some examples of non-standard string literals. Other examples are given in

the Metaprogramming section.

7.9 Regular Expressions

Julia has Perl-compatible regular expressions (regexes), as provided by the PCRE library (a description of the syntax
can be found here). Regular expressions are related to strings in two ways: the obvious connection is that regular
expressions are used to find regular patterns in strings; the other connection is that reqular expressions are themselves
input as strings, which are parsed into a state machine that can be used to efficiently search for patterns in strings.
In Julia, regular expressions are input using non-standard string literals prefixed with various identifiers beginning

with r. The most basic regular expression literal without any options turned on just uses r"...":

juliay r"\s*(7:#]$)"

r'Ms*(2:#1$)"

julia> typeof(ans)

Regex

To check if a regex matches a string, use occursin:

julia> occursin(r"\s*(7:#|$)", "not a comment™)

false


https://en.wikipedia.org/wiki/Character_encoding#Terminology
http://www.pcre.org/
http://www.pcre.org/current/doc/html/pcre2syntax.html
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julia> occursin(r" \s#(?:#/$)", "# a comment")

true

As one can see here, occursin simply returns true or false, indicating whether a match for the given regex occurs in
the string. Commonly, however, one wants to know not just whether a string matched, but also how it matched. To

capture this information about a match, use the match function instead:

julia> match(r""\s*(?:#|/$)", "not a comment")

julia> match(r" \s=(?:#|$)", "# a comment™)

RegexMatch("#")

If the regular expression does not match the given string, match returns nothing — a special value that does not print
anything at the interactive prompt. Other than not printing, it is a completely normal value and you can test for it

programmatically:

m = match(r""\s=(?:#]$)", line)
if m === nothing

println("not a comment")
else

println("blank or comment™)

end

If a regular expression does match, the value returned by match is a RegexMatch object. These objects record how the
expression matches, including the substring that the pattern matches and any captured substrings, if there are any.
This example only captures the portion of the substring that matches, but perhaps we want to capture any non-blank

text after the comment character. We could do the following:

julia> m = match(r""\s*(7:#\s*(.*7)\s*$|$)", "# a comment ")

RegexMatch("# a comment ", 1="a comment")

When calling match, you have the option to specify an index at which to start the search. For example:

julia> m = match(r"[0-9]","aaaalaaaa2aaaa3",1)

RegexMatch("1")
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julia> m = match(r"[0-9]","aaaalaaaa2aaaa3",6)

RegexMatch("2")

julia> m = match(r"[0-9]", "aaaalaaaa2aaaa3",11)

RegexMatch("3")

You can extract the following info from a RegexMatch object:

« the entire substring matched: m.match
 the captured substrings as an array of strings: m.captures
« the offset at which the whole match begins: m.offset

« the offsets of the captured substrings as a vector: m.offsets

For when a capture doesn't match, instead of a substring, m. captures contains nothing in that position, and m.offsets
has a zero offset (recall that indices in Julia are 1-based, so a zero offset into a string is invalid). Here is a pair of

somewhat contrived examples:

julia> m = match(r"(ajb)(c)?(d)", "acd")

RegexMatch("acd", 1="a", 2="c", 3="d")

julia> m.match

" "

acd

julia> m.captures

3-element Array{Union{Nothing, SubString{String}},1}:
ngn
nen

g

julia> m.offset

1

julia> m.offsets
3-element Array{Int64,1}:
1
2

3
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julia> m = match(r"(ajb)(c)?(d)", "ad")

RegexMatch("ad", 1="a", 2=nothing, 3="d")

julia> m.match

“ad"

julia> m.captures

3-element Array{Union{Nothing, SubString{String}},1}:
ngn
nothing

e

julia> m.offset

1

julia> m.offsets
3-element Array{Int64,1}:
1
0

2

[t is convenient to have captures returned as an array so that one can use destructuring syntax to bind them to local

variables:

julia> first, second, third = m.captures; first

v

Captures can also be accessed by indexing the RegexMatch object with the number or name of the capture group:

julia> m=match(r"(?<hour>\d+): (?<minute>\d+)","12:45")

RegexMatch("12:45", hour="12", minute="45")

julia> m[:minute]

"g5"

julia> m[2]

45"
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Captures can be referenced in a substitution string when using replace by using \n to refer to the nth capture group
and prefixing the substitution string with s. Capture group O refers to the entire match object. Named capture groups

can be referenced in the substitution with \g<groupname>. For example:

julia> replace("first second", r"(\w+) (?<agroup>\w+)" => s"\g<agroup> \1")

"second first"

Numbered capture groups can also be referenced as \g<n> for disambiguation, as in:

julia> replace("a", r"." => s"\g<0>1")

"1t

You can modify the behavior of regular expressions by some combination of the flags i, m, s, and x after the closing
double quote mark. These flags have the same meaning as they do in Perl, as explained in this excerpt from the perlre

manpage:

i Do case-insensitive pattern matching.

If locale matching rules are in effect, the case map is taken
from the current locale for code points less than 255, and
from Unicode rules for larger code points. However, matches
that would cross the Unicode rules/non-Unicode rules boundary

(ords 255/256) will not succeed.

m Treat string as multiple lines. That is, change """ and "$"
from matching the start or end of the string to matching the
start or end of any line anywhere within the string.

s Treat string as single line. That is, change to match any
character whatsoever, even a newline, which normally it would
not match.

nu non

Used together, as r""ms, they let the match any character
whatsoever, while still allowing """ and "$" to match,
respectively, just after and just before newlines within the

string.

x  Tells the regular expression parser to ignore most whitespace

that is neither backslashed nor within a character class. You



http://perldoc.perl.org/perlre.html#Modifiers
http://perldoc.perl.org/perlre.html#Modifiers
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can use this to break up your regular expression into
(slightly) more readable parts. The '#' character is also
treated as a metacharacter introducing a comment, just as in

ordinary code.

For example, the following regex has all three flags turned on:

julia> r"a+.*b+.*7d$"ism

r'a+.xb+.%7d$"ims

julia> match(r"a+.xb+.%7d$"ism, "Goodbye,\nOh, angry,\nBad world\n")

RegexMatch("angry,\nBad world")

The r"..." literal is constructed without interpolation and unescaping (except for quotation mark " which still has

to be escaped). Here is an example showing the difference from standard string literals:

julia> x = 10

10

julia> r"$x"

ey

julia> "$x"

"1g"

julia> r"\x"

r'\x"

julia> "\x"

ERROR: syntax: invalid escape sequence

Triple-quoted regex strings, of the form r"""...""" are also supported (and may be convenient for regular expres-

sions containing quotation marks or newlines).

The Regex() constructor may be used to create a valid regex string programmatically. This permits using the contents
of string variables and other string operations when constructing the regex string. Any of the regex codes above can

be used within the single string argument to Regex(). Here are some examples:

julia> using Dates
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julia> d = Date(1962,7,10)

1962-07-10

julia> regex_d = Regex("Day " * string(day(d)))

r'Day 10"

julia> match(regex_d, "It happened on Day 10")

RegexMatch("Day 10")

julia> name = "Jon"

"Jon"

julia> regex_name = Regex("[\"( 1$name[\") 1") # interpolate value of name

r*[\"( 1Jon[\") 1"

julia> match(regex_name," Jon ")

RegexMatch(" Jon ")

julia> match(regex_name,"[Jon]") === nothing

true

7.10 Byte Array Literals

Another useful non-standard string literal is the byte-array string literal: b"...". This form lets you use string nota-
tion to express read only literal byte arrays —i.e. arrays of UInt8 values. The type of those objects is CodeUnits{UInt8,

String}. The rules for byte array literals are the following:

« ASCII characters and ASCII escapes produce a single byte.
+ \x and octal escape sequences produce the byte corresponding to the escape value.

« Unicode escape sequences produce a sequence of bytes encoding that code point in UTF-8.

There is some overlap between these rules since the behavior of \x and octal escapes less than 0x80 (128) are covered
by both of the first two rules, but here these rules agree. Together, these rules allow one to easily use ASCII characters,

arbitrary byte values, and UTF-8 sequences to produce arrays of bytes. Here is an example using all three:

julia> b"DATA\xff\u2200"
8-element Base.CodeUnits{UInt8,String}:

0x44
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0x41
0x54
0x41
oxff
Oxe2

0x88

0x80

The ASCII string "DATA" corresponds to the bytes 68, 65, 84, 65. \xff produces the single byte 255. The Unicode
escape \u2200 is encoded in UTF-8 as the three bytes 226, 136, 128. Note that the resulting byte array does not

correspond to a valid UTF-8 string:

julia> isvalid("DATA\xff\u2200™")

false

As it was mentioned CodeUnits{UInt8,String} type behaves like read only array of UInt8 and if you need a standard

vector you can convert it using Vector{UInt8}:

julia> x = b"123"

3-element Base.CodeUnits{UInt8,String}:
0x31

0x32

0x33

julia> x[1]

0x31

julia> x[1] = 0x32
ERROR: setindex! not defined for Base.CodeUnits{UInt8,String}

[...]

julia> Vector{UInt8}(x)
3-element Array{UInt8,1}:
0x31

0x32

0x33

Also observe the significant distinction between \xff and \uff: the former escape sequence encodes the byte 255,

whereas the latter escape sequence represents the code point 255, which is encoded as two bytes in UTF-8:



7.11. VERSION NUMBER LITERALS 77

julia> b"\xff"
1-element Base.CodeUnits{UInt8,String}:

oxff

julia> b"\uff"
2-element Base.CodeUnits{UInt8,String}:
oxc3

Oxbf

Character literals use the same behavior.

For code points less than \u8, it happens that the UTF-8 encoding of each code point is just the single byte produced
by the corresponding \x escape, so the distinction can safely be ignored. For the escapes \x80 through \xff as compared
to \u80 through \uff, however, there is a major difference: the former escapes all encode single bytes, which — unless
followed by very specific continuation bytes — do not form valid UTF-8 data, whereas the latter escapes all represent

Unicode code points with two-byte encodings.

If this is all extremely confusing, try reading "The Absolute Minimum Every Software Developer Absolutely, Posi-
tively Must Know About Unicode and Character Sets". It's an excellent introduction to Unicode and UTF-8, and may

help alleviate some confusion regarding the matter.

7.11 Version Number Literals

Version numbers can easily be expressed with non-standard string literals of the form v"...". Version number literals
create VersionNumber objects which follow the specifications of semantic versioning, and therefore are composed of
major, minor and patch numeric values, followed by pre-release and build alpha-numeric annotations. For example,
v"0.2.1-rcl+win64" is broken into major version @, minor version 2, patch version 1, pre-release rcl and build win64.
When entering a version literal, everything except the major version number is optional, therefore e.g. v"0.2" is

equivalent to v"0.2.0" (with empty pre-release/build annotations), v'2" is equivalent to v"2.0.0", and so on.

VersionNumber objects are mostly useful to easily and correctly compare two (or more) versions. For example, the
constant VERSION holds Julia version number as a VersionNumber object, and therefore one can define some version-

specific behavior using simple statements as:

if v"0.2" <= VERSION < v"0.3-"
# do something specific to 0.2 release series

end

Note that in the above example the non-standard version number v"0.3-" is used, with a trailing -: this notation is

a Julia extension of the standard, and it's used to indicate a version which is lower than any 0.3 release, including


https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://semver.org/
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all of its pre-releases. So in the above example the code would only run with stable 0.2 versions, and exclude such
versions as v"0.3.0-rc1". In order to also allow for unstable (i.e. pre-release) 0.2 versions, the lower bound check

should be modified like this: v"0.2-" <= VERSION.

Another non-standard version specification extension allows one to use a trailing + to express an upper limit on
build versions, e.g. VERSION > v"0.2-rc1+" can be used to mean any version above 0.2-rcl and any of its builds: it

will return false for version v"0.2-rcl+win64" and true for v"0.2-rc2".

It is good practice to use such special versions in comparisons (particularly, the trailing - should always be used
on upper bounds unless there's a good reason not to), but they must not be used as the actual version number of

anything, as they are invalid in the semantic versioning scheme.

Besides being used for the VERSION constant, VersionNumber objects are widely used in the Pkg module, to specify

packages versions and their dependencies.

7.12 Raw String Literals

Raw strings without interpolation or unescaping can be expressed with non-standard string literals of the form
raw"...". Raw string literals create ordinary String objects which contain the enclosed contents exactly as entered
with no interpolation or unescaping. This is useful for strings which contain code or markup in other languages

which use $ or \ as special characters.

The exception is that quotation marks still must be escaped, e.g. raw"\"" is equivalent to "\"". To make it possible to

express all strings, backslashes then also must be escaped, but only when appearing right before a quote character:

julia> println(raw”\\ \\\"")
A\

Notice that the first two backslashes appear verbatim in the output, since they do not precede a quote character.
However, the next backslash character escapes the backslash that follows it, and the last backslash escapes a quote,

since these backslashes appear before a quote.
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function g(x,y)
return x * y
X +y

end

2 HlAEs R AL

julia> f(x,y) = x +y

f (generic function with 1 method)

julia> function g(x,y)
return x * y
X +y
end

g (generic function with 1 method)

julia> f(2,3)

5
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julia> g(2,3)
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julia> function hypot(x,y)

x = abs(x)

y = abs(y)

if x>y
r=y/x

return x*sqrt(1l+rr)
end
ify==20
return zero(x)
end
r=x/y
return y*sqrt(1l+r+r)
end

hypot (generic function with 1 method)

julia> hypot(3, 4)

9l ehare R0l wet Al 7R e = ghs vkttt pR|etol] returng AYFSiE HO.

julia> function g(x, y)::Int8
return x * y

end;

julia> typeof(g(l, 2))

Int8
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function printx(x)
println("x = $x")
return nothing

end

This is a convention in the sense that nothing is not a Julia keyword but a only singleton object of type Nothing.
Also, you may notice that the printx function example above is contrived, because println already returns nothing,

so that the return line is redundant.

There are two possible shortened forms for the return nothing expression. On the one hand, the return keyword
implicitly returns nothing, so it can be used alone. On the other hand, since functions implicitly return their last
expression evaluated, nothing can be used alone when it's the last expression. The preference for the expression

return nothing as opposed to return or nothing alone is a matter of coding style.

julia> 1 +2 + 3

6

julia> +(1,2,3)

6

BI|He 22 ATES W), AAZ Julias WO infix B71S 84 E7|2 uIRA Akt

julia> f = +;

julia> f(1,2,3)

6
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julia> x > x™2 + 2x - 1

#1 (generic function with 1 method)

julia> function (x)

X2+ 2x - 1

end

#3 (generic function with 1 method)
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julia> map(round, [1.2,3.5,1.7])

3-element Array{Float64,1}:
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julia> map(x -> x*2 + 2x - 1, [1,3,-1])
3-element Array{Int64,1}:
2

14
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julia> (1, 1+1)

1, 2)
julia> (1,)
1,)

julia> x = (0.0, "hello", 6%7)

(0.9, "hello", 42)

julia> x[2]

"hello"
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8.9. ¥ EZ(NAMED TUPLE)

8.9 A EZ(Named tuple)

=1, b=1+1)

julia> x = (a

(a=1,b=2)

julia> x.a
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julia> function foo(a,b)

a+b, axb

end

foo (generic function with 1 method)

julia> foo(2,3)

(5, 6)

tod

S
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o], Julia
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&t At

julia> x, y = foo(2,3)

(5, 6)

julia> x

julia> y




86 CHAPTER 8. &t

4

returnC 2 & THE W4 8HES 8 4 Qltt, of2ff o4& o] of|#|et £Zo] 2tE3it:

function foo(a,b)
return a+b, axb

end

8.11 1z F

The destructuring feature can also be used within a function argument. If a function argument name is written as a

tuple (e.g. (x, y)) instead of just a symbol, then an assignment (x, y) = argument will be inserted for you:

julia> minmax(x, y) = (y < x) 2 (y, x) = (X, y)

julia> range((min, max)) = max - min

julia> range(minmax(10, 2))

8

Notice the extra set of parentheses in the definition of range. Without those, range would be a two-argument function,

and this example would not work.
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julia> bar(a,b,x...) = (a,b,x)

bar (generic function with 1 method)

9] ollAfloll A 25 FHA QAP7EA] = agt bol] FE AL, W4 x0fl= U] Q12150] FE2 FOIA HSHH:

julia> bar(1,2)

(1, 2, O)

julia> bar(1,2,3)

(1, 2, (3,))

julia> bar(1, 2, 3, 4)
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(1, 2, 3, 4)

julia> bar(1,2,3,4,5,6)
(1, 2, (3, 4, 5, 6))
718101219 JHAE A|Gkel= YPH S nfy[jui 2z O 2 A|5hE Varargs U] A Soj|A] &HQ18F £ 9QlT},
Utk interable ZiHof] HAE gt SILIBILIE B 34 xt2 21 A8 o, i ¥igo] ...
o]

'gojze. ofelo) AL FEol Yobk ZAHA 2t Aol £ATHE S

julia> x = (3, 4)

G, M

julia> bar(1,2,x...)

(1, 2, 3, 4)

julia> x = (2, 3, 4)
(2, 3, 4)

julia> bar(1,x...)

(1,2, 3, 4)

julia> x = (1, 2, 3, 4)

(1, 2, 3, 4

julia> bar(x...)

(1, 2, 3, 4)

E2 interable Z84J|0] 7]t 5} 9] wf
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julia> x = [3,4]
2-element Array{Int64,1}:
3

4

julia> bar(1,2,x...)

(1, 2, 3, 4)

julia> x = [1,2,3,4]
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4-element Array{Int64,1}:
1

2

3

4

julia> bar(x...)

(1, 2, 3, 4)

N

BRI 3147t ool = AR 4 Slck

e

julia> baz(a,b) = a + b;

julia> args = [1,2]
2-element Array{Int64,1}:
1

2

julia> baz(args...)

3

julia> args = [1,2,3]
3-element Array{Int64,1}:
1

2

3

julia> baz(args...)
ERROR: MethodError: no method matching baz(::Int64, ::Int64, ::Int64)

Closest candidates are:

baz(::Any, ::Any) at none:1

RO QIR A4t AR

8.13 7|&2Z}o] A== QX optional arguments)

2 2531t o § SE0]Dates?] DateErof] 217 H Date(y, [m, d])
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function Date(y::Int64, m::Int64=1, d::Int64=1)
err = validargs(Date, y, m, d)
err === nothing || throw(err)
return Date(UTD(totaldays(y, m, d)))

end

O] ofjAfjof] ALY S 5tH, Datedr4 UTInstant{Day}2ts QXIS BHe TFE WA E g4 DateE S &5, 9] &2 o]l
met o] SHpofle QIXIE B, &, 52 APHE 2 £ 1o, QAL Y Foix|x] S FP 10] AR HojHZS ¢ £

Act:

julia> using Dates

julia> Date(2000, 12, 12)

2000-12-12

julia> Date(2000, 12)

2000-12-01

julia> Date(2000)

2000-01-01

7127} Al 2L th2Q12} 8k40] AL T 0|42 9|5t Z1o|tH(Note on Optional and keyword ArgumentsE B2}, 9] of|A|of| A

8.14 Keyword Arguments

Some functions need a large number of arguments, or have a large number of behaviors. Remembering how to call
such functions can be difficult. Keyword arguments can make these complex interfaces easier to use and extend by

allowing arguments to be identified by name instead of only by position.

For example, consider a function plot that plots a line. This function might have many options, for controlling line
style, width, color, and so on. If it accepts keyword arguments, a possible call might look like plot(x, y, width=2),
where we have chosen to specify only line width. Notice that this serves two purposes. The call is easier to read,
since we can label an argument with its meaning. It also becomes possible to pass any subset of a large number of

arguments, in any order.

Functions with keyword arguments are defined using a semicolon in the signature:
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function plot(x, y; style="solid", width=1, color="black")
H#iH

end

When the function is called, the semicolon is optional: one can either call plot(x, y, width=2) or plot(x, y;
width=2), but the former style is more common. An explicit semicolon is required only for passing varargs or com-

puted keywords as described below.

Keyword argument default values are evaluated only when necessary (when a corresponding keyword argument is

not passed), and in left-to-right order. Therefore default expressions may refer to prior keyword arguments.

The types of keyword arguments can be made explicit as follows:

function f(;x::Int=1)
H#HE

end

Extra keyword arguments can be collected using ..., as in varargs functions:

function f(x; y=0, kwargs...)
H#iHE

end

Inside f, kwargs will be a key-value iterator over a named tuple. Named tuples (as well as dictionaries with keys of

Symbol) can be passed as keyword arguments using a semicolon in a call, e.g. f(x, z=1; kwargs...).

If a keyword argument is not assigned a default value in the method definition, then it is required: an UndefKeywordError

exception will be thrown if the caller does not assign it a value:

function f(x; y)
H#it#H
end

(3, y=5) # ok, y is assigned

f(3) # throws UndefKeywordError(:y)
One can also pass key => value expressions after a semicolon. For example, plot(x, y; :width => 2) is equivalent
to plot(x, y, width=2). This is useful in situations where the keyword name is computed at runtime.

The nature of keyword arguments makes it possible to specify the same argument more than once. For example, in

the call plot(x, y; options..., width=2) it is possible that the options structure also contains a value for width. In
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such a case the rightmost occurrence takes precedence; in this example, width is certain to have the value 2. However,
explicitly specifying the same keyword argument multiple times, for example plot(x, y, width=2, width=3), is not

allowed and results in a syntax error.

8.15 Evaluation Scope of Default Values

When optional and keyword argument default expressions are evaluated, only previous arguments are in scope. For

example, given this definition:

function f(x, a=b, b=1)
H#it

end

the b in a=b refers to a b in an outer scope, not the subsequent argument b.

8.16 Do-Block Syntax for Function Arguments

Passing functions as arguments to other functions is a powerful technique, but the syntax for it is not always conve-
nient. Such calls are especially awkward to write when the function argument requires multiple lines. As an example,

consider calling map on a function with several cases:

map(x->begin

if x < 0 && iseven(x)
return 0

elseif x == 0
return 1

else
return x

end

end,

[A, B, CD)

Julia provides a reserved word do for rewriting this code more clearly:

map([A, B, C]) do x
if x < 0 && iseven(x)
return 0

elseif x ==
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return 1
else

return x
end

end

The do x syntax creates an anonymous function with argument x and passes it as the first argument to map. Similarly,
do a,b would create a two-argument anonymous function, and a plain do would declare that what follows is an

anonymous function of the form () -> ....

How these arguments are initialized depends on the "outer" function; here, map will sequentially set x to A, B, C, calling

the anonymous function on each, just as would happen in the syntax map(func, [A, B, C]).

This syntax makes it easier to use functions to effectively extend the language, since calls look like normal code
blocks. There are many possible uses quite different from map, such as managing system state. For example, there is

a version of open that runs code ensuring that the opened file is eventually closed:

open(“outfile"”, "w") do io
write(io, data)

end

This is accomplished by the following definition:

function open(f::Function, args...)
io = open(args...)
try
f(io)
finally
close(io)

end

end

Here, open first opens the file for writing and then passes the resulting output stream to the anonymous function
you defined in the do ... end block. After your function exits, open will make sure that the stream is properly
closed, regardless of whether your function exited normally or threw an exception. (The try/finally construct will

be described in #|0] S £)

With the do block syntax, it helps to check the documentation or implementation to know how the arguments of the

user function are initialized.
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A do block, like any other inner function, can "capture" variables from its enclosing scope. For example, the variable
data in the above example of open...do is captured from the outer scope. Captured variables can create performance

challenges as discussed in performance tips.

8.17 Function composition and piping

Functions in Julia can be combined by composing or piping (chaining) them together.

Function composition is when you combine functions together and apply the resulting composition to arguments. You

use the function composition operator (o) to compose the functions, so (f o g)(args...) isthe same as f(g(args...)).
You can type the composition operator at the REPL and suitably-configured editors using \circ<tab>.

For example, the sqrt and + functions can be composed like this:

julia> (sqrt o +)(3, 6)

3.0
This adds the numbers first, then finds the square root of the result.
The next example composes three functions and maps the result over an array of strings:
julia> map(first o reverse o uppercase, split("you can compose functions like this"))

6-element Array{Char,1}:

'

Function chaining (sometimes called "piping" or "using a pipe" to send data to a subsequent function) is when you

apply a function to the previous function's output:

julia> 1:10 |> sum |> sgrt

7.416198487095663

Here, the total produced by sum is passed to the sqrt function. The equivalent composition would be:

julia> (sqrt o sum)(1:10)

7.416198487095663



94 CHAPTER 8.

golt
£

The pipe operator can also be used with broadcasting, as . |>, to provide a useful combination of the chaining/piping

and dot vectorization syntax (described next).

julia> ["a", "list", "of", "strings"] .|> [uppercase, reverse, titlecase, length]
4-element Array{Any,1}:

"

"tsil"

"OfF"

8.18 BiYol|A] AI25H= Dot 24
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julia> A = [1.0, 2.0, 3.0]
3-element Array{Float64,1}:
1.0
2.0

3.0

julia> sin.(A)

3-element Array{Float64,1}:
0.8414709848078965
0.9092974268256817

0.1411200080598672

=& AREAIZL f(A::AbstractArray) = map(f, A)SF 0] 21 HlE| of5 RIEE 2= 71551 f.(A)TF B82{0lH.

o f Al

More generally, f. (args...) isactually equivalent to broadcast(f, args...), which allows you to operate on multiple
arrays (even of different shapes), or a mix of arrays and scalars (see Broadcasting). For example, if you have f(x,y)
= 3x + 4y, then f.(pi,A) will return a new array consisting of f(pi,a) for each a in A, and f. (vector1l,vector2) will
return a new vector consisting of f(vectori[i],vector2[i]) for each index i (throwing an exception if the vectors

have different length).

julia> f(x,y) = 3x + 4y;
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julia> A = [1.0, 2.0, 3.01;

julia> B = [4.0, 5.0, 6.0];

julia> f.(pi, A)

3-element Array{Float64,1}:
13.42477796076938
17.42477796076938

21.42477796076938

julia> f.(A, B)
3-element Array{Float64,1}:
19.0

26.0

33.0

Moreover, nested f.(args...) calls are fused into a single broadcast loop. For example, sin. (cos. (X)) is equivalent
to broadcast(x -> sin(cos(x)), X), similar to [sin(cos(x)) for x in X]: there is only a single loop over X, and a
single array is allocated for the result. [In contrast, sin(cos(X)) in a typical "vectorized" language would first allocate
one temporary array for tmp=cos(X), and then compute sin(tmp) in a separate loop, allocating a second array.] This
loop fusion is not a compiler optimization that may or may not occur, it is a syntactic guarantee whenever nested
f.(args...) calls are encountered. Technically, the fusion stops as soon as a "non-dot" function call is encountered;

for example, in sin. (sort(cos.(X))) the sin and cos loops cannot be merged because of the intervening sort function.

Finally, the maximum efficiency is typically achieved when the output array of a vectorized operation is pre-allocated,
so that repeated calls do not allocate new arrays over and over again for the results (see Pre-allocating outputs). A
convenient syntax for this is X .= ..., which is equivalent to broadcast!(identity, X, ...) except that, as above,
the broadcast! loop is fused with any nested "dot" calls. For example, X .= sin.(Y) is equivalent to broadcast!(sin,
X, Y), overwriting X with sin.(Y) in-place. If the left-hand side is an array-indexing expression, e.g. X[2:end] .=
sin.(Y), then it translates to broadcast! on a view, e.g. broadcast!(sin, view(X, 2:lastindex(X)), Y), so that the

left-hand side is updated in-place.

Since adding dots to many operations and function calls in an expression can be tedious and lead to code that is
difficult to read, the macro @. is provided to convert every function call, operation, and assignment in an expression

into the "dotted" version.

julia> Y = [1.0, 2.0, 3.0, 4.0];

julia> X = similar(Y); # pre-allocate output array
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julia> @. X = sin(cos(Y)) # equivalent to X .= sin.(cos.(Y))
4-element Array{Float64,1}:

0.5143952585235492

-0.4042391538522658

-0.8360218615377305

-0.6080830096407656

Binary (or unary) operators like .+ are handled with the same mechanism: they are equivalent to broadcast calls and
are fused with other nested "dot" calls. X .+= Y etcetera is equivalent to X .= X .+ Y and results in a fused in-place

assignment; see also dot operators,

You can also combine dot operations with function chaining using >, as in this example:

julia> [1:5;] .|> [x->x"2, inv, x->2#*x, -, isodd]
5-element Array{Real,1}:

1

0.5

6

-4

true

8.19 Further Reading

We should mention here that this is far from a complete picture of defining functions. Julia has a sophisticated
type system and allows multiple dispatch on argument types. None of the examples given here provide any type
annotations on their arguments, meaning that they are applicable to all types of arguments. The type system is
described in Types and defining a function in terms of methods chosen by multiple dispatch on run-time argument

types is described in Methods.
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julia> z = begin
X =1

y=2
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+

end

ok

9l9} o] 4je] Zol7} of

(x=1;y =2 x+y)

julia> z

OJFAIT, begin E5

o4

=kl

W57 of2

1,y =2; x +y end

julia> begin x

julia> (x = 1;

X +y)

if-elseif-else &

o0
o v

At o

ot

if x <y

println("x is less than y")

elseif x > y

println("x is greater than y")

else

println("x is equal to y")

end

AAFSHAL trueo]

oAU,

Yet. 2ol ohatd, 2740 x > y

XA x < y7} trueo]

o] of=tH, else S 501 A

=}
=]

t}

julia> function test(x, y)

if x <y

println("x is less than y")



elseif x > y
println("x is greater than y")
else
println("x is equal to y")
end
end

test (generic function with 1 method)

julia> test(1, 2)

x is less than y

julia> test(2, 1)

x is greater than 'y

julia> test(1, 1)

x is equal to y

elseif@ else 22 A AlGlo|0, Yol= THE U2 elseif

o WwWu

A2 O S AIO] 22 trueR ALHE W7kA] ALTEL, 1 Sof A S50]

julia> function test(x,y)

if x <y

relation = "less than"
elseif x ==

relation = "equal to"
else

relation = "greater than"
end

println("x is ", relation, " y.")
end

test (generic function with 1 method)

julia> test(2, 1)

X is greater than y.

99
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julia> function test(x,y)
if x <y
relation = "less than"
elseif x ==y
relation = "equal to"
end
println("x is ", relation, " y.")
end

test (generic function with 1 method)

julia> test(1,2)

x is less than y.

julia> test(2,1)
ERROR: UndefVarError: relation not defined
Stacktrace:

[1] test(::Int64, ::Int64) at ./none:7

it 225 2t WEsl] B2l CF2 e Aojlq Q& ASOIA: opis B & QigUh o] Zhe Bl MuEt
271014 lxjsto 2 Ay R vHagtoln), mety

julia> x = 3

3

julia if x > 0

"positive!"
else
"negative..."
end
"positive!"
Ot A2 (3t 28 ©) AL L thg Hofl Ay 9i%o] Julia® T 3|2 A Sl 23 BITCH= 2S {57
sizUnt

C, MATLAB, Perl, Python, RubySt= th2A] 2Z7AAI9] Z}o] truelt falseZ} ofU™ F 7} €HAlSIH, 0]: Javalt ZH0]
21238

2
S A4 2L 9lojet B|&sitty & 4 & Th
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juliay if 1
printin("true")
end

ERROR: TypeError: non-boolean (Int64) used in boolean context

o] 9L 27K0] AR A2HS 9132 LRI Intesd THAl BoolEo] Soj7tof 3tz

A9 "M AUAB R BRIE 70k if-elseif-else T2 B3 B0l YUk $AV} I TE B2 271 Yol
1

S 2 ), WAL DUNoIM S 2UR o] BRI RojH AGFUIL 0] A tEEel T2 ojoHE

Uk of71A 29} : ZSlof Fuio] glojor

7 99] at ZZA0|T, A5 AMALE a7} trueo|H bE, falseold ¢S AR
2 HAIBHIALL. arh:cst 22 AlS QEBHA 2 AYUITH(ChE 29} : 212}o] S0 4% 22 AL 7E)

0] 5212 olaliste 7Hd 412 Y2 oA E E= AYUH. o] ofHoflA println 222 Al B2 RRo|A ZREJAS U
.1

julia> x = 1; y = 2;

julia> println(x <y ? "less than" : "not less than")

less than
julia> x = 1; y = 0;

julia> println(x <y ? "less than" : "not less than")

not less than

x <y AO] YOI, A A AR A2 "less than” FALS ASHL, AZ0IH "not less than” FAES 24T

ZYU. 7129 A F S 12 oAIE TSR T ALAE of2] ¥ AHgSHo) 3HE Bt gyt

julia> test(x, y) = println(x <y ? "x is less than y"
X >y ? "x is greater than y" : "x is equal to y")

test (generic function with 1 method)

julia> test(1, 2)

x is less than y
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julia> test(2, 1)

X is greater than y

julia> test(1, 1)

X is equal to y

AZS G 57) Slal QA R2EOM YZOR AZFLY,

o

if-elseif-elseQ} Z0] 2714]0] 22} truelt falseE AlAHE wfgt : QHE Qi Ao] ALMHTHE A AA] S8t

julia> v(x) = (println(x); x)

v (generic function with 1 method)

julia> 1 < 2 7 v("yes") : v("no")
yes

"yes"

julia> 1 > 2 7 v("yes") : v("no")

no

"no"

9.3 T Al
o e 220 AT S QAU o] S 18 Y 1 WU} Y TR Re] BYW T2 12 dojolH 28
4 YUk ol BT AP YO BHAOIM, 23 £2RRlS ZYSIL o W M2 AR AU, FasA

- EAY a & bo)H, 59) BAY b 0 a7} true AN mEt AL wect,
+ EANa |} bollM, 55) BHY b %] a7} false ALY WT AL wct,
9t 519, a7} falseol®, bl Zhol BAIGIO] a 84 b 27 falser}t 517, a7t trueo]®, bl Zholl A0l a &4 bl

2271 truer} 5)7] BEQUC 889 || 25 02 Z0] AUE|AIT, 867t BT 9H 297 H AU Asee S1e

olsat] Uk,

julia> t(x) = (println(x); true)

t (generic function with 1 method)



1
2

true

1
2

false

false

1

false

1

true

true

true

julia> t(1) |}

julia> t(1) |}

julia> f(1) ||

julia> f(1) |}

julia> t(1) & t(2)

julia> t(1) && f(2)

julia> f(1) && t(2)

julia> f(1) & f(2)

t(2)

f(2)

t(2)

f(2)

julia> f(x) = (println(x); false)

f (generic function with 1 method)

103
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o] F32 Juliaof|A o B2 if 29 822 A3 AMZEUTE if <Z7> <EZ> end THAO], <2 2> J2]1 LA
<EZHOIZL Q8 4 U <R > & BE>S & 4 UFUTh HIXoHA, if | <22> <22 end THAIO], <2 24> OFHH
@0 GE e 2> 1 EI>e 4 USHH

julia> function fact(n::Int)
n>= 0 || error("n must be non-negative")
n == 0 & return 1
n * fact(n-1)
end

fact (generic function with 1 method)

julia> fact(5)
120

julia> fact(0)
1

julia> fact(-1)

ERROR: n must be non-negative
Stacktrace:

[1] error at ./error.j1:33 [inlined]

[2] fact(::Int64) at ./none:2

[3] top-level scope

julia> f(1) & t(2)
1
2

false

julia> t(1) | t(2)
1
2

true
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if, elseif T AMGF QA A AFREE RZAA I OIZIR R, 88Ut || A T HARAL7} =22k (true = false) S 7140}

r
gyt 218 A1 7HY o9 =S A5t ofHoll = vl =2igts AHgSE 27 7H AT

julia> 1 && true

ERROR: TypeError: non-boolean (Int64) used in boolean context

gheof] 2AR A Zofl= o

rr
rg
Bl

Aols A8

ot

2 Ql&UL) o= M8l 2710] wet AlstE 3 vkskE Zo]7] (heQlyct.

julia> true & (x = (1, 2, 3))
(1, 2, 3)

julia> false && (x = (1, 2, 3))

false

<o)

4 gk

o

Ak 22
Yt A4S whiledt for TRLE LU TEH THE-2 while 2] of| ALt
julia> i = 1;

julia> while i <=5

println(i)
global i +=1
end

1

2

3

4

5

while2 2AA(0P7IM = 1 <= 5)2 AN}, falsed W7HA] while o5 APt

for2 HHSH

o

Jm
ox
ol

2152 wrEs| gt 9 oAl for X2 Wr} 7HASH 28 4 Qg

julia» for i = 1:5
println(i)

end
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CHAPTER 9. Ao} 32

of710lM 1:55 WS Aol %71 1, 2, 3, 4, 59 £AE UERGULEL for 2ZL 0] IS WhEsln, 7 258 A=
W2 jof] Idetch 9o while 2T FAT} for 2T HAl0] 2 Q351 21o]A 2 shtt HIE ¥H4U) BAIE L Heldun
Bof 4 17} Th2 Fejoll A MRAE|Z] QYTHY, for T FAGIAL for 2T UROIMT B 4 90, 2T Q1) 21 28
OFEE 2 4 Qg 01 HIAES Y M2 T A QAHAL TI2 W4 020 B HUth

julia> for j = 1:5

printin(j)
end

1

2

3

4

5

julia> j

ERROR: UndefVarError: j not defined

w4 eQfol] et AAIRE AP Scope of Variables A& Sall SISHIAIR. UVHHO R, for 2o FAH| 0L HE]C]

T ol o Past stE

julia> for i in [1,4,0]
println(i)

end

julia> for s € ["foo","bar","baz"]
printin(s)
end
foo
bar

baz

=T inolut 7} ThE (A2t &7d5] S53H2

bu
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Ceat Q) $HE 7153t ZiElo|u7} o IR TR vl B BR)IH 20T 18 AU

i)y

U,

A% 5700l whileolut for & B3 ol Bl w7} YUt ol break JIAER 5L 5 9

julia> i = 1;

julia> while true
println(i)
if i >=5
break
end
global i +=1

end

julia> for j = 1:1000
println(j)
if j>=5

break
end

end

9] ollHofI M= break 7= glO]= while RE= Hof AAR FREZ] QI3 20|, for L= 10007HA] ML & 21 Qe

O] T B E breakd ALGSI0] WIHLZ 4 YU

Aol v g 22511 2] ThS BAIR Jol7kn A2 T continue ThHE 2 gUict.

t}

fr

julia> for i = 1:10
ifi%s3!=0
continue

end
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println(i)
end
3
6
9
Ol 278 FREGHL println 222 if £5 Qo] FOf ¢ T2 25 FoA Uerd & {171 digoll tha 19t
oAUt AA FEAE continue FHoll AAIE T EV} 6 2 Zlo|n], 22 continueZ} 03] ¥ AFRE 4% 9I&UTH

julia> for i = 1:2, j = 3:4
println((i, j))
end
1, 3)
1, 4
(2, 3)
2, 4

9] 2HolHE WSl AAE AR TH WA S A8

=
breaki 25 2IE S&ahl| guth 19§ ¥4 5 o oyl 2T} A3 2 of glo] X WS DR M8 o] i g HHE 1
e 2I0|A 0|2 &9l & 4 glark

julia> for i = 1:2, j = 3:4
printin((i, j))
i=0

end

(1, 3)

(1, 4

(2, 3)

2, 4

vtot 9 4|7} 0]% for RmE THECHA igho] 7ol 27]3}E]7] ot oS st S B 4 YU
9.5 o9 A

oll7]2] e 2710] W vt SEAA HAS ZHS utalelz] 28 2 AU} o2 ALk o 2MQl Z7AA]
A QR U S Z2ol SOt T2 WS Z25IL 70| 28 45 QAT T2 I2f0i7 oMl RS H2jsls RES
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712 o< Bt

of7]2] ¥ 2710] YojtH Exceptiono] gt Ct. ofefo] UEH 7|2 AlF Exception2 &

St

4
oX
oz
X
rO
2L
<2
(ol
llf]
o

Exception

ArgumentError

BoundsError

CompositeException

DivideError

DomainError

EOFError

ErrorException

InexactError

InitError

InterruptException

InvalidStateException

KeyError

LoadError

QutOfMemoryError

ReadOnlyMemoryError

RemoteException

MethodError

OverflowError

Meta.ParseError

SystemError

TypeError

UndefRefError

UndefVarError

StringIndexError

o

i
u[r

o,

o] Al2 Zho]] 2125 sqrt 8H4~= DomainErrorS throwdhJc},

dlo

julia> sqrt(-1)
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ERROR: DomainError with -1.0:

sqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).

Stacktrace:

[...]

ST 22 WO A8 O o9l Y TS 4 YU

julia> struct MyCustomException <: Exception end

throw gt

oSl throwg AFZ310} BAIHO 2 BHS 4 SigULt. oS Sol, Q147} 8401H 147} 8471 ofd £Aj2% Yoig

=
SH42 ZFAE10] DomainErrorE throwdt 4~ 9J&U T

julia> f(x) = x>=0 ? exp(-x) : throw(DomainError(x, "argument must be nonnegative"))

f (generic function with 1 method)

julia> f(1)

0.36787944117144233

julia> f(-1)

ERROR: DomainError with -1:
argument must be nonnegative
Stacktrace:

[1] f(::Int64) at ./none:1

257} 9l DomainErrori of|2l7} ohjat o]9] EIIQIS 7]9I5HAIAI. Exception AH|E PO T Zafof it

julia> typeof(DomainError(nothing)) <: Exception

true

julia> typeof(DomainError) <: Exception

false

Lo
a

o

U 02 HL ©F B0 ABEE St 0149 A4S TRR Fct,

julia> throw(UndefVarError(:x))

ERROR: UndefVarError: x not defined
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O] I F-2 UndefvarError} 220§ 2] ;= Alo] w2t A& 2L 4 0] ol 2] Rdol] sl YA FHE 4 AFH-

julia> struct MyUndefVarError <: Exception
var::Symbol

end

julia> Base.showerror(io::I0, e::MyUndefVarError) = print(io, e.var, " not defined")

N 29 27 HAIRE 2PdT o A B Dolg 2242 PEE 20|

L

olfN

&Ut}h o€ E0], size(A) == size(B) }|

throw(DimensionMismatch("size of A not equal to size of B"))
7t

OfgfECt of £2 ol M| YLct
“size(A) == size(B) || throw(DimensionMismatch("Size of A not equal to size of B")) .3}A|2t

H2= EAS A HH 2aA= A2 F= Aol F24d, dE =9

TE A

ol

t40| 9147t HEAY FLYLCh size(A,1) ==

size(B,2) || throw(DimensionMismatch("A has first dimension..."))".

error @<= YA Ao 55 Yslishs ErrorExceptions /g3t o AHEEU.

249 A2 HokY ZA] WS WED ATk AT 0|22 517] Yl 947t 84019 2E WSt sqrt 49
22 Wi o £ gayct

julia> fussy_sqgrt(x) = x >= 0 7 sqrt(x) : error("negative x not allowed")

fussy_sqrt (generic function with 1 method)

julia> fussy_sqrt(2)

1.4142135623730951

julia> fussy_sqrt(-1)

ERROR: negative x not allowed
Stacktrace:

[1] error at ./error.j1:33 [inlined]

[2] fussy_sqrt(::Int64) at ./none:1

[3] top-level scope

fussy_sart7} 5% B4:2] AW A5} sh Zo] ohjat T2 FaoMq 24 ZHoR SEEW, 24 wHaElo] thatA
Aol 23 tAIRIE EAGCE
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julia> function verbose_fussy_sqrt(x)
printin("before fussy_sqrt")
r = fussy_sqrt(x)
printin("after fussy_sqrt")
return r
end

verbose_fussy_sqrt (generic function with 1 method)

julia> verbose_fussy_sqrt(2)
before fussy_sqrt
after fussy_sqrt

1.4142135623730951

julia> verbose_fussy_sqrt(-1)
before fussy_sqrt
ERROR: negative x not allowed
Stacktrace:
[1] error at ./error.jl1:33 [inlined]
[2] fussy_sqrt at ./none:1 [inlined]
[3] verbose_fussy_sqrt(::Int64) at ./none:3

[4] top-level scope

try/catch®

The try/catch statement allows for Exceptions to be tested for, and for the graceful handling of things that may
ordinarily break your application. For example, in the below code the function for square root would normally throw
an exception. By placing a try/catch block around it we can mitigate that here. You may choose how you wish to
handle this exception, whether logging it, return a placeholder value or as in the case below where we just printed out
a statement. One thing to think about when deciding how to handle unexpected situations is that using a try/catch
block is much slower than using conditional branching to handle those situations. Below there are more examples of

handling exceptions with a try/catch block:

julia> try
sqrt("ten")
catch e
println("You should have entered a numeric value")
end

You should have entered a numeric value
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=3t try/catch@2 ExceptionO] B15:0] HYE|=E SUct. o] AQHH o Aol A, T2 o= x7t ARl 7158t 3¢ x9] &

WAl 4.9 AFTE AT, TP O W A4S FHYE T AF2S NELL,

julia> sqgrt_second(x) = try
sqrt(x[21)
catch y
if isa(y, DomainError)
sqrt(complex(x[2], 0))
elseif isa(y, BoundsError)
sqrt(x)
end
end

sqrt_second (generic function with 1 method)

julia> sqrt_second([1 41)

2.0

julia> sqrt_second([1 -4])

0.0 + 2.0im

julia> sqrt_second(9)

3.0

julia> sqrt_second(-9)

ERROR: DomainError with -9.0:

sqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).
Stacktrace:

[...]

catch TH39] 712 &4 o9 01202 SAT 20T, R0l & F2 try/catchBS A4 ©f ZoJsHo} FUTh g
[e)
s

FEL QI WSITIE 2 2

o n
T
T
0
ol
ot
)

try bad() catch x end

i1 M2 22 AFZa17ILE catch THS ol 18 2AE ATelalAlAlL.

try bad() catch; x end

try bad()
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catch

end

fol

try/catch29 P2 22 P40 2H0M A H 22 242 A SYEALdS SA 2 =)
L/YSHA] 2 F-ol AR 2ES B0l o &2 PR ghe L5tk 2] BigAgu. Jullay 19 2F A2|E fsh

rethrow, backtrace, catch_backtrace 12]1 Base.catch_stackQ Z2 at4LES A2},

finally=

el 92 2B TUT 2L 24 AS ALGSIE BEOIME YN0 R TETEBRS ) S0l Sk el H(of
mhel 27])o] Sigick. ool o] S ojwH Be B 4 SlgUrh el 2 B2o] Yo B Hoj
289 5 Q7 GRUrh finally 7|9EL F01 3= 220 87} Y4 RRE 712X 92 Y EE U
sz Ut

ols 5%, 2 YIS HA5| TS 4 Yt WL e 2EU

f = open("file")
try

# operate on file f
finally

close(f)

end

o7} try E2 & wWyY wi(return Ti20]] BUE, YA 22 ZLHE) close(f)7H AEUTE THeF of7]A try E20] |92
ol 225H dlee AlE SAE AYU catch 222 try Y finallyet 2 £ Qo2 o] oA E catchrt

o
922 A=i8 ol finally2o] YL/ 22 Zeuck

AL QAT YA O R ANS YA FTSHL CHA| Al 4 YA FE Ao} 58 715 YUk 0] 7152 the TR 2y
Qlojol e Y T2H, 3Y AT, Y BEE|AY Ei YA HEolo| T 2L T2 ]8O 2 B,

Taskiz LFEOll THA] Al2HE 4 9lon], 0l 1 AJZoA 812 Al g0l 84 23} bl2s

= 712] 223t 20|

ml?
T
£
2
=

Tt ov =2

%ol 9l JERAS R 372 AF8SHA lo B2 A2 AMRSHK] PUE ATHEX| BlAS
10| WY 4 gUr S, B4 BIHE Fe) B2 L Qolo] $HZ WY 4 gUrt T4

271 Aol} 25 Y42 Soprhy] W) 48 Aashor st TR
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Q&L Uy BRIN BRI Aol et BES e

Juliax 0] ZAIE siZ5t7] 91gt Channel HIHUSS AZYUT. Channel o2 AT S Q1 & 4 Q1= Wil 7hs@t

XQ & (FIFO) th71 8 (queue) JUTh

put! B2 Eoll 22 Aot AR BATE Holal BAIC ZHS AuIslai AL A ElA2E AlSsE 2 ofleksfof
SUTh Q147 shLtel S48 Q14 Wobsol: Bt channel AR ol 2oid ZS Agsl o AHRE 4

=2
AgHTh 13 og AHE AH oM RIEHO 2 S take! S S8 7HHE & AU

julia> function producer(c::Channel)
put!(c, "start")
for n=1:4
put!(c, 2n)
end
put!(c, "stop")

end;
julia> chnl = Channel(producer);

julia> take!(chnl)

"start"

julia> take!(chnl)

2
julia> take!(chnl)
julia> take!(chnl)
6

julia> take!(chnl)

8

julia> take!(chnl)

"stop"
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0] F2FS 25t oF 7HA] W2 producer”} 012 ¥ Bieto] 7155t ZAJUT. put! S& Atofof] A3 =te] o] A
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julia> for x in Channel(producer)
printin(x)
end

start

BlAT0) BE S20] Y 23 B

HAZ0) 20 AZR17] RYUCH Y AR AT ZRYW A5 02 YU of2} A4S st BAZo] 28
A

AT YA 947t gl 45 olgste SO Blado] 29 AU UEL A AL A S8 BY A4S
185t 342 FR2 YUtk 35 WAL WA Ul WEHE Z90l0) o] 29 BB ¥4 98 T2 IS A%}
QAL 179 Q148 2 o 48 st o BRI

function mytask(myarg)

end

taskHdl = Task(() -> mytask(7))

SY5HA

taskHdl = @task mytask(7)

# &=

rir

CEHAT 2 A RIS IS D AAES AL8Sto] YA AL AR 2ul2t

S JuliaQ BjA3 7|5
puting FA0[|A] =253

E9] CPU 20|15 AHESIES AAIEE 0 A 5UH. IR 78 22| E& Parallel Com-

u:|> rlo
L g
0
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EEEE R o
A3 94 Aol B22 ALY yieldtoRlo] U UYL BABHIAL. E25T Watsts B2 thAl P4 o2
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yieldtox Z25tA|0h S|Pt R L0 BlAT I} DAS AW TER|= Y&t o T2 oty E71Q. 3z ejA3 2
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yieldto 9Jof], EHAI S SO 2 A3 fshiie F 71 71229 eh47t of gy,
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« current_taskt 3zf AeiZ0l JAIE RS}

+ istaskdone: EfA37 £83=2] ojB

i
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L
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« istaskstarted= EJAT I} AlS) 2012] 022 241t}

. task_local_storage 3Zf EfA IS} W 7)7F &4 S 22T}

=
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:runnable
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:done
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:failed
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Chapter 10

Scope of Variables

The scope of a variable is the region of code within which a variable is visible. Variable scoping helps avoid variable
naming conflicts. The concept is intuitive: two functions can both have arguments called x without the two x's
referring to the same thing. Similarly, there are many other cases where different blocks of code can use the same
name without referring to the same thing. The rules for when the same variable name does or doesn't refer to the

same thing are called scope rules; this section spells them out in detail.

Certain constructs in the language introduce scope blocks, which are regions of code that are eligible to be the scope
of some set of variables. The scope of a variable cannot be an arbitrary set of source lines; instead, it will always
line up with one of these blocks. There are two main types of scopes in Julia, global scope and local scope. The latter

can be nested. The constructs introducing scope blocks are:

Scope constructs

Construct | Scope type | Scope blocks it may be nested in

module, baremodule global global

interactive prompt (REPL) global global

(mutable) struct, macro local global

for, while, try-catch-finally, let local global or local

functions (either syntax, anonymous & do-blocks) local global or local
comprehensions, broadcast-fusing local global or local

Notably missing from this table are begin blocks and if blocks which do not introduce new scopes. Both types of

scopes follow somewhat different rules which will be explained below.

Julia uses lexical scoping, meaning that a function's scope does not inherit from its caller's scope, but from the scope
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in which the function was defined. For example, in the following code the x inside foo refers to the x in the global

scope of its module Bar:

julia> module Bar
X =1
foo() = x

end;

and not a x in the scope where foo is used:

julia> import .Bar

julia> x = -1;

julia> Bar.foo()

1

Thus lexical scope means that the scope of variables can be inferred from the source code alone.

10.1 Global Scope

Each module introduces a new global scope, separate from the global scope of all other modules; there is no all-
encompassing global scope. Modules can introduce variables of other modules into their scope through the using
or import statements or through qualified access using the dot-notation, i.e. each module is a so-called namespace.

Note that variable bindings can only be changed within their global scope and not from an outside module.

julia> module A
a=1# aglobal in A's scope

end;

julia> module B
module C
c=2
end
b =C.c # can access the namespace of a nested global scope
# through a qualified access
import ..A # makes module A available
d=A.a

end;
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julia> module D
b = a # errors as D's global scope is separate from A's
end;

ERROR: UndefVarError: a not defined

julia> module E
import ..A # make module A available
A.a =2 # throws below error

end;

ERROR: cannot assign variables in other modules

Note that the interactive prompt (aka REPL) is in the global scope of the module Main.

10.2 Local Scope

A new local scope is introduced by most code blocks (see above table for a complete list). A local scope inherits
all the variables from a parent local scope, both for reading and writing. Unlike global scopes, local scopes are not
namespaces, thus variables in an inner scope cannot be retrieved from the parent scope through some sort of qualified

access.

The following rules and examples pertain to local scopes. A newly introduced variable in a local scope cannot be

referenced by a parent scope. For example, here the 2z is not introduced into the top-level scope:

julia> for i = 1:10
z=1

end

julia> z

ERROR: UndefVarError: z not defined

Note

In this and all following examples it is assumed that their top-level is a global scope with a clean

workspace, for instance a newly started REPL.

Inner local scopes can, however, update variables in their parent scopes:

julia> for i = 1:1

z=1
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for j = 1:1
z=20
end
printin(z)
end

Inside a local scope a variable can be forced to be a new local variable using the local keyword:

julia> for i = 1:1
x=1+1
for j = 1:1
local x = @
end
printin(x)

end

Inside a local scope a global variable can be assigned to by using the keyword global:

julia> for i = 1:10
global z
z=1

end

julia> z

10

The location of both the local and global keywords within the scope block is irrelevant. The following is equivalent

to the last example (although stylistically worse):

julia> for i = 1:10
z=1
global z

end

julia> z

10
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The local and global keywords can also be applied to destructuring assignments, e.g. local x, y = 1, 2. In this case

the keyword affects all listed variables.

In a local scope, all variables are inherited from its parent global scope block unless:

« an assignment would result in a modified global variable, or

- avariable is specifically marked with the keyword local.

Thus global variables are only inherited for reading, not for writing:
julia> x, y = 1, 2;
julia> function foo()

X =2 # assignment introduces a new local

return x + y # y refers to the global

end;

julia> foo()

4

julia> x

1

An explicit global is needed to assign to a global variable:

Avoiding globals

Avoiding changing the value of global variables is considered by many to be a programming best-
practice. Changing the value of a global variable can cause "action at a distance", making the behavior
of a program harder to reason about. This is why the scope blocks that introduce local scope require the

global keyword to declare the intent to modify a global variable.

julia> x = 1;

julia> function foobar()

global x = 2

end;

julia> foobar();
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julia> x

2

Note that nested functions can modify their parent scope's local variables:

julia> x, y = 1, 2;

julia> function baz()
X = 2 # introduces a new local
function bar()
x =10 # modifies the parent's x
return x + y # y is global
end
return bar() + x # 12 + 10 (x is modified in call of bar())

end;

julia> baz()

22

julia> x, y # verify that global x and y are unchanged

(1, 2)

SCOPE OF VARIABLES

The reason to allow modifying local variables of parent scopes in nested functions is to allow constructing closures

which have private state, for instance the state variable in the following example:

julia> let state = 0
global counter() = (state += 1)

end;

julia> counter()

1

julia> counter()

2

See also the closures in the examples in the next two sections. A variable, such as x in the first example and state in

the second, that is inherited from the enclosing scope by the inner function is sometimes called a captured variable.

Captured variables can present performance challenges discussed in performance tips.
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The distinction between inheriting global scope and nesting local scope can lead to some slight differences between
functions defined in local versus global scopes for variable assignments. Consider the modification of the last example

by moving bar to the global scope:

julia> x, y = 1, 2;

julia> function bar()
x = 10 # local, no longer a closure variable
return x +y

end;

julia> function quz()
x = 2 # local
return bar() + x # 12 + 2 (x is not modified)

end;

julia> quz()

14

julia> x, y # verify that global x and y are unchanged

(1, 2)

Note that the above nesting rules do not pertain to type and macro definitions as they can only appear at the global
scope. There are special scoping rules concerning the evaluation of default and keyword function arguments which

are described in the Function section.

An assignment introducing a variable used inside a function, type or macro definition need not come before its inner

usage:

julia> f =y >y + a;

julia> f(3)
ERROR: UndefVarError: a not defined
Stacktrace:

[...]

julia> a =1

1
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julia> f(3)

4

This behavior may seem slightly odd for a normal variable, but allows for named functions — which are just normal
variables holding function objects — to be used before they are defined. This allows functions to be defined in
whatever order is intuitive and convenient, rather than forcing bottom up ordering or requiring forward declarations,
as long as they are defined by the time they are actually called. As an example, here is an inefficient, mutually

recursive way to test if positive integers are even or odd:

julia> even(n) = (n == 0) ? true : odd(n - 1);

julia> odd(n) = (n == 0) ? false : even(n - 1);

julia> even(3)

false

julia> odd(3)

true

Julia provides built-in, efficient functions to test for oddness and evenness called iseven and isodd so the above

definitions should only be considered to be examples of scope, not efficient design.

Let Blocks

Unlike assignments to local variables, let statements allocate new variable bindings each time they run. An assign-
ment modifies an existing value location, and let creates new locations. This difference is usually not important,
and is only detectable in the case of variables that outlive their scope via closures. The let syntax accepts a comma-

separated series of assignments and variable names:

julia> x, y, z = -1, -1, -1;

julia> let x = 1, z
println("x: $x, y: $y") # x is local variable, y the global
println("z: $z") # errors as z has not been assigned yet but is local
end
x: 1, y: -1

ERROR: UndefVarError: z not defined
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The assignments are evaluated in order, with each right-hand side evaluated in the scope before the new variable on
the left-hand side has been introduced. Therefore it makes sense to write something like let x = x since the two x

variables are distinct and have separate storage. Here is an example where the behavior of let is needed:

julia> Fs = Vector{Any}(undef, 2); i = 1;

julia> while i <= 2
Fs[i] = O->i
global i +=1

end

julia> Fs[1]10)

3

julia> Fs[2]()
3

Here we create and store two closures that return variable i. However, it is always the same variable i, so the two

closures behave identically. We can use let to create a new binding for i:

julia> Fs = Vector{Any}(undef, 2); i = 1;

julia> while i <= 2

leti=1
Fs[i] = O->i
end
global i += 1
end

julia> Fs[1]()

1

julia> Fs[2]0)
2

Since the begin construct does not introduce a new scope, it can be useful to use a zero-argument let to just introduce

a new scope block without creating any new bindings:

julia> let

local x = 1
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let

local x = 2
end
X

end

Since let introduces a new scope block, the inner local x is a different variable than the outer local x.

For Loops and Comprehensions

for loops, while loops, and Comprehensions have the following behavior: any new variables introduced in their body

scopes are freshly allocated for each loop iteration, as if the loop body were surrounded by a let block:

julia> Fs = Vector{Any}(undef, 2);

julia> for j = 1:2
Fs[il = O->j

end

julia> Fs[110)

1

julia> Fs[2]()
2

A for loop or comprehension iteration variable is always a new variable:

julia> function f()

end
return i

end;

julia> f()
0

However, it is occasionally useful to reuse an existing local variable as the iteration variable. This can be done

conveniently by adding the keyword outer:
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julia> function f()
i=0
for outer i = 1:3
end
return i

end;

julia> ()
3

10.3 Constants

A common use of variables is giving names to specific, unchanging values. Such variables are only assigned once.

This intent can be conveyed to the compiler using the const keyword:

julia> const e = 2.71828182845904523536;

julia> const pi = 3.14159265358979323846;

Multiple variables can be declared in a single const statement:

julia» const a, b =1, 2

(1, 2)

The const declaration should only be used in global scope on globals. It is difficult for the compiler to optimize
code involving global variables, since their values (or even their types) might change at almost any time. If a global

variable will not change, adding a const declaration solves this performance problem.

Local constants are quite different. The compiler is able to determine automatically when a local variable is constant,

so local constant declarations are not necessary, and in fact are currently not supported.
Special top-level assignments, such as those performed by the function and struct keywords, are constant by default.

Note that const only affects the variable binding; the variable may be bound to a mutable object (such as an array),
and that object may still be modified. Additionally when one tries to assign a value to a variable that is declared

constant the following scenarios are possible:

+ if a new value has a different type than the type of the constant then an error is thrown:
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julia> const x = 1.0

1.0

julia> x = 1

ERROR: invalid redefinition of constant x

- if a new value has the same type as the constant then a warning is printed:

julia> const y = 1.0

1.0

julia> y = 2.0
WARNING: redefining constant y

2.0

- if an assignment would not result in the change of variable value no message is given:

julia> const z = 100

100

julia> z = 100

100

The last rule applies for immutable objects even if the variable binding would change, e.g.:

julia> const s1 = "1

nyn

julia> s2 = "1"

nqn

julia> pointer.([s1, s2], 1)
2-element Array{Ptr{UInt8},1}:
Ptr{UInt8} @0x00000000132c9638

Ptr{UInt8} @0x0000000013dd3d18

julia> sl = s2

nyn
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julia> pointer.([s1, s2], 1)
2-element Array{Ptr{UInt8},1}:
Ptr{UInt8} @0x0000000013dd3d18

Ptr{UInt8} @0x0000000013dd3d18

However, for mutable objects the warning is printed as expected:

julia> const a = [1]
1-element Array{Int64,1}:

1

julia> a = [1]
WARNING: redefining constant a
1-element Array{Int64,1}:

1

Note that although sometimes possible, changing the value of a const variable is strongly discouraged, and is intended
only for convenience during interactive use. Changing constants can cause various problems or unexpected behaviors.
For instance, if a method references a constant and is already compiled before the constant is changed then it might

keep using the old value:

julia> const x = 1

1

julia> f() = x

f (generic function with 1 method)

julia> f()
1

julia> x = 2
WARNING: redefining constant x

2

julia> ()

1






Chapter 11

Types

Type systems have traditionally fallen into two quite different camps: static type systems, where every program
expression must have a type computable before the execution of the program, and dynamic type systems, where
nothing is known about types until run time, when the actual values manipulated by the program are available.
Object orientation allows some flexibility in statically typed languages by letting code be written without the precise
types of values being known at compile time. The ability to write code that can operate on different types is called
polymorphism. All code in classic dynamically typed languages is polymorphic: only by explicitly checking types, or

when objects fail to support operations at run-time, are the types of any values ever restricted.

Julia's type system is dynamic, but gains some of the advantages of static type systems by making it possible to
indicate that certain values are of specific types. This can be of great assistance in generating efficient code, but
even more significantly, it allows method dispatch on the types of function arguments to be deeply integrated with

the language. Method dispatch is explored in detail in A=, but is rooted in the type system presented here.

The default behavior in Julia when types are omitted is to allow values to be of any type. Thus, one can write many
useful Julia functions without ever explicitly using types. When additional expressiveness is needed, however, it is
easy to gradually introduce explicit type annotations into previously "untyped" code. Adding annotations serves
three primary purposes: to take advantage of Julia's powerful multiple-dispatch mechanism, to improve human

readability, and to catch programmer errors.

Describing Julia in the lingo of type systems, it is: dynamic, nominative and parametric. Generic types can be param-
eterized, and the hierarchical relationships between types are explicitly declared, rather than implied by compatible
structure. One particularly distinctive feature of Julia's type system is that concrete types may not subtype each
other: all concrete types are final and may only have abstract types as their supertypes. While this might at first
seem unduly restrictive, it has many beneficial consequences with surprisingly few drawbacks. It turns out that be-
ing able to inherit behavior is much more important than being able to inherit structure, and inheriting both causes

significant difficulties in traditional object-oriented languages. Other high-level aspects of Julia's type system that
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should be mentioned up front are:

+ There is no division between object and non-object values: all values in Julia are true objects having a type

that belongs to a single, fully connected type graph, all nodes of which are equally first-class as types.

+ There is no meaningful concept of a "compile-time type": the only type a value has is its actual type when the
program is running. This is called a "run-time type" in object-oriented languages where the combination of

static compilation with polymorphism makes this distinction significant.
+ Only values, not variables, have types — variables are simply names bound to values.

- Both abstract and concrete types can be parameterized by other types. They can also be parameterized by
symbols, by values of any type for which isbits returns true (essentially, things like numbers and bools that
are stored like C types or structs with no pointers to other objects), and also by tuples thereof. Type parameters

may be omitted when they do not need to be referenced or restricted.

Julia's type system is designed to be powerful and expressive, yet clear, intuitive and unobtrusive. Many Julia
programmers may never feel the need to write code that explicitly uses types. Some kinds of programming, however,

become clearer, simpler, faster and more robust with declared types.

11.1 Type Declarations

The :: operator can be used to attach type annotations to expressions and variables in programs. There are two

primary reasons to do this:

1. Asan assertion to help confirm that your program works the way you expect,

2. To provide extra type information to the compiler, which can then improve performance in some cases

When appended to an expression computing a value, the :: operator is read as "is an instance of". It can be used
anywhere to assert that the value of the expression on the left is an instance of the type on the right. When the type
on the right is concrete, the value on the left must have that type as its implementation — recall that all concrete types
are final, so no implementation is a subtype of any other. When the type is abstract, it suffices for the value to be
implemented by a concrete type that is a subtype of the abstract type. If the type assertion is not true, an exception

is thrown, otherwise, the left-hand value is returned:

julia> (1+2)::AbstractFloat

ERROR: TypeError: in typeassert, expected AbstractFloat, got Int64
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julia> (1+2)::Int

3

This allows a type assertion to be attached to any expression in-place.

When appended to a variable on the left-hand side of an assignment, or as part of a local declaration, the :: operator
means something a bit different: it declares the variable to always have the specified type, like a type declaration
in a statically-typed language such as C. Every value assigned to the variable will be converted to the declared type

using convert:

julia> function foo()
x::Int8 = 100
X
end

foo (generic function with 1 method)

julia> foo()

100

julia> typeof(ans)

Int8

This feature is useful for avoiding performance "gotchas" that could occur if one of the assignments to a variable

changed its type unexpectedly.

This "declaration” behavior only occurs in specific contexts:

local x::Int8 +# in a local declaration

x::Int8 = 10 # as the left-hand side of an assignment

and applies to the whole current scope, even before the declaration. Currently, type declarations cannot be used in

global scope, e.g. in the REPL, since Julia does not yet have constant-type globals.

Declarations can also be attached to function definitions:

function sinc(x)::Float64
if x ==
return 1
end
return sin(pixx)/(pi*x)

end
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Returning from this function behaves just like an assignment to a variable with a declared type: the value is always

converted to Float64.

11.2 Abstract Types

Abstract types cannot be instantiated, and serve only as nodes in the type graph, thereby describing sets of related
concrete types: those concrete types which are their descendants. We begin with abstract types even though they
have no instantiation because they are the backbone of the type system: they form the conceptual hierarchy which

makes Julia's type system more than just a collection of object implementations.

Recall that in Integers and Floating-Point Numbers, we introduced a variety of concrete types of numeric values:
Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128, Floatl6, Float32, and Float64. Although
they have different representation sizes, Int8, Int16, Int32, Int64 and Int128 all have in common that they are signed
integer types. Likewise UInt8, UInt16, UInt32, UInt64 and UInt128 are all unsigned integer types, while Float16,
Float32 and Float64 are distinct in being floating-point types rather than integers. It is common for a piece of code
to make sense, for example, only if its arguments are some kind of integer, but not really depend on what particular
kind of integer. For example, the greatest common denominator algorithm works for all kinds of integers, but will not
work for floating-point numbers. Abstract types allow the construction of a hierarchy of types, providing a context
into which concrete types can fit. This allows you, for example, to easily program to any type that is an integer,

without restricting an algorithm to a specific type of integer.

Abstract types are declared using the abstract type keyword. The general syntaxes for declaring an abstract type

are:

abstract type «name» end

abstract type «name» <: «supertype» end

The abstract type keyword introduces a new abstract type, whose name is given by «name». This name can be
optionally followed by <: and an already-existing type, indicating that the newly declared abstract type is a subtype
of this "parent” type.

When no supertype is given, the default supertype is Any — a predefined abstract type that all objects are instances
of and all types are subtypes of. In type theory, Any is commonly called "top" because it is at the apex of the type
graph. Julia also has a predefined abstract "bottom" type, at the nadir of the type graph, which is written as Union{}.

[t is the exact opposite of Any: no object is an instance of Union{} and all types are supertypes of Union{}.

Let's consider some of the abstract types that make up Julia's numerical hierarchy:

abstract type Number end

abstract type Real <: Number end
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abstract type AbstractFloat <: Real end
abstract type Integer <: Real end
abstract type Signed <: Integer end

abstract type Unsigned <: Integer end

The Number type is a direct child type of Any, and Real is its child. In turn, Real has two children (it has more,
but only two are shown here; we'll get to the others later): Integer and AbstractFloat, separating the world into
representations of integers and representations of real numbers. Representations of real numbers include, of course,
floating-point types, but also include other types, such as rationals. Hence, AbstractFloat is a proper subtype of
Real, including only floating-point representations of real numbers. Integers are further subdivided into Signed and

Unsigned varieties.

The <: operator in general means "is a subtype of", and, used in declarations like this, declares the right-hand type
to be an immediate supertype of the newly declared type. It can also be used in expressions as a subtype operator

which returns true when its left operand is a subtype of its right operand:

julia> Integer <: Number

true

julia> Integer <: AbstractFloat

false

An important use of abstract types is to provide default implementations for concrete types. To give a simple example,

consider:

function myplus(x,y)
X+y

end

The first thing to note is that the above argument declarations are equivalent to x::Any and y::Any. When this
function is invoked, say as myplus(2,5), the dispatcher chooses the most specific method named myplus that matches

the given arguments. (See M4 = for more information on multiple dispatch.)

Assuming no method more specific than the above is found, Julia next internally defines and compiles a method
called myplus specifically for two Int arguments based on the generic function given above, i.e., it implicitly defines

and compiles:

function myplus(x::Int,y::Int)
X+y

end
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and finally, it invokes this specific method.

Thus, abstract types allow programmers to write generic functions that can later be used as the default method by
many combinations of concrete types. Thanks to multiple dispatch, the programmer has full control over whether

the default or more specific method is used.

An important point to note is that there is no loss in performance if the programmer relies on a function whose
arguments are abstract types, because it is recompiled for each tuple of argument concrete types with which it is
invoked. (There may be a performance issue, however, in the case of function arguments that are containers of

abstract types; see Performance Tips.)

11.3 Primitive Types

A primitive type is a concrete type whose data consists of plain old bits. Classic examples of primitive types are
integers and floating-point values. Unlike most languages, Julia lets you declare your own primitive types, rather
than providing only a fixed set of built-in ones. In fact, the standard primitive types are all defined in the language

itself:

primitive type Floatl6 <: AbstractFloat 16 end
primitive type Float32 <: AbstractFloat 32 end

primitive type Float64 <: AbstractFloat 64 end

primitive type Bool <: Integer 8 end

primitive type Char <: AbstractChar 32 end

primitive type Int8 <: Signed 8 end

primitive type UInt8 <: Unsigned 8 end

primitive type Intl6 <: Signed 16 end
primitive type UIntl6 <: Unsigned 16 end
primitive type Int32 <: Signed 32 end
primitive type UInt32 <: Unsigned 32 end
primitive type Int64 <: Signed 64 end
primitive type UInt64 <: Unsigned 64 end
primitive type Int128 <: Signed 128 end

primitive type UInt128 <: Unsigned 128 end

The general syntaxes for declaring a primitive type are:

primitive type «name» «bits» end

primitive type «name» <: «supertype» «bits» end
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The number of bits indicates how much storage the type requires and the name gives the new type a name. A primitive
type can optionally be declared to be a subtype of some supertype. If a supertype is omitted, then the type defaults
to having Any as its immediate supertype. The declaration of Bool above therefore means that a boolean value takes
eight bits to store, and has Integer as its immediate supertype. Currently, only sizes that are multiples of 8 bits are
supported. Therefore, boolean values, although they really need just a single bit, cannot be declared to be any smaller

than eight bits.

The types Bool, Int8 and UInt8 all have identical representations: they are eight-bit chunks of memory. Since Julia's
type system is nominative, however, they are not interchangeable despite having identical structure. A fundamental
difference between them is that they have different supertypes: Bool's direct supertype is Integer, Int8's is Signed,
and UInt8's is Unsigned. All other differences between Bool, Int8, and UInt8 are matters of behavior — the way
functions are defined to act when given objects of these types as arguments. This is why a nominative type system
is necessary: if structure determined type, which in turn dictates behavior, then it would be impossible to make Bool

behave any differently than Int8 or UInt8.

11.4 Composite Types

Composite types are called records, structs, or objects in various languages. A composite type is a collection of named
fields, an instance of which can be treated as a single value. In many languages, composite types are the only kind

of user-definable type, and they are by far the most commonly used user-defined type in Julia as well.

In mainstream object oriented languages, such as C++, Java, Python and Ruby, composite types also have named
functions associated with them, and the combination is called an "object". In purer object-oriented languages, such
as Ruby or Smalltalk, all values are objects whether they are composites or not. In less pure object oriented languages,
including C++ and Java, some values, such as integers and floating-point values, are not objects, while instances of
user-defined composite types are true objects with associated methods. In Julia, all values are objects, but functions
are not bundled with the objects they operate on. This is necessary since Julia chooses which method of a function
to use by multiple dispatch, meaning that the types of all of a function's arguments are considered when selecting a
method, rather than just the first one (see M|A]= for more information on methods and dispatch). Thus, it would be
inappropriate for functions to "belong" to only their first argument. Organizing methods into function objects rather
than having named bags of methods "inside" each object ends up being a highly beneficial aspect of the language

design.

Composite types are introduced with the struct keyword followed by a block of field names, optionally annotated

with types using the :: operator:

julia> struct Foo
bar

baz::Int
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qux: :Float64

end

Fields with no type annotation default to Any, and can accordingly hold any type of value.

New objects of type Foo are created by applying the Foo type object like a function to values for its fields:

julia> foo = Foo("Hello, world.", 23, 1.5)

Foo("Hello, world."”, 23, 1.5)

julia> typeof(foo)

Foo

When a type is applied like a function it is called a constructor. Two constructors are generated automatically (these
are called default constructors). One accepts any arguments and calls convert to convert them to the types of the
fields, and the other accepts arguments that match the field types exactly. The reason both of these are generated is

that this makes it easier to add new definitions without inadvertently replacing a default constructor.

Since the bar field is unconstrained in type, any value will do. However, the value for baz must be convertible to Int:
julia> Foo((), 23.5, 1)

ERROR: InexactError: Int64(23.5)

Stacktrace:

[...]

You may find a list of field names using the fieldnames function.

julia> fieldnames(Foo)

(:bar, :baz, :qux)

You can access the field values of a composite object using the traditional foo.bar notation:

julia> foo.bar

"Hello, world."

julia> foo.baz

23

julia> foo.qux

1.5
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Composite objects declared with struct are immutable; they cannot be modified after construction. This may seem

odd at first, but it has several advantages:

« It can be more efficient. Some structs can be packed efficiently into arrays, and in some cases the compiler is

able to avoid allocating immutable objects entirely.
« It is not possible to violate the invariants provided by the type's constructors.

+ Code using immutable objects can be easier to reason about.

An immutable object might contain mutable objects, such as arrays, as fields. Those contained objects will remain

mutable; only the fields of the immutable object itself cannot be changed to point to different objects.

Where required, mutable composite objects can be declared with the keyword mutable struct, to be discussed in the

next section.

Immutable composite types with no fields are singletons; there can be only one instance of such types:

julia> struct NoFields

end

julia> NoFields() === NoFields()

true

The === function confirms that the "two" constructed instances of NoFields are actually one and the same. Singleton

types are described in further detail below.

There is much more to say about how instances of composite types are created, but that discussion depends on both
Parametric Types and on WA=, and is sufficiently important to be addressed in its own section: Constructors.
11.5 Mutable Composite Types

If a composite type is declared with mutable struct instead of struct, then instances of it can be modified:

julia> mutable struct Bar
baz
qux: :Float64

end

julia> bar = Bar("Hello", 1.5);
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julia> bar.qux = 2.0

2.0

1//2

julia> bar.baz

1//2

In order to support mutation, such objects are generally allocated on the heap, and have stable memory addresses.
A mutable object is like a little container that might hold different values over time, and so can only be reliably
identified with its address. In contrast, an instance of an immutable type is associated with specific field values —-
the field values alone tell you everything about the object. In deciding whether to make a type mutable, ask whether
two instances with the same field values would be considered identical, or if they might need to change independently

over time. If they would be considered identical, the type should probably be immutable.

To recap, two essential properties define immutability in Julia:

+ [t is not permitted to modify the value of an immutable type.

— For bits types this means that the bit pattern of a value once set will never change and that value is the

identity of a bits type.

— For composite types, this means that the identity of the values of its fields will never change. When the
fields are bits types, that means their bits will never change, for fields whose values are mutable types
like arrays, that means the fields will always refer to the same mutable value even though that mutable

value's content may itself be modified.

+ An object with an immutable type may be copied freely by the compiler since its immutability makes it im-

possible to programmatically distinguish between the original object and a copy.

— In particular, this means that small enough immutable values like integers and floats are typically passed

to functions in registers (or stack allocated).

— Mutable values, on the other hand are heap-allocated and passed to functions as pointers to heap-
allocated values except in cases where the compiler is sure that there's no way to tell that this is not what

is happening.

11.6 Declared Types

The three kinds of types (abstract, primitive, composite) discussed in the previous sections are actually all closely

related. They share the same key properties:
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» They are explicitly declared.

» They have names.

» They have explicitly declared supertypes.

» They may have parameters.
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Because of these shared properties, these types are internally represented as instances of the same concept, DataType,

which is the type of any of these types:

julia> typeof(Real)

DataType

julia> typeof(Int)

DataType

A DataType may be abstract or concrete. If it is concrete, it has a specified size, storage layout, and (optionally) field

names. Thus a primitive type is a DataType with nonzero size, but no field names. A composite type is a DataType

that has field names or is empty (zero size).

Every concrete value in the system is an instance of some DataType.

11.7 Type Unions

A type union is a special abstract type which includes as objects all instances of any of its argument types, constructed

using the special Union keyword:

julia> IntOrString = Union{Int,AbstractString}

Union{Int64, AbstractString}

julia> 1 :: IntOrString
1

julia> "Hello!" :: IntOrString

"Hello!"

julia> 1.0 :: IntOrString

ERROR: TypeError: in typeassert, expected Union{Int64, AbstractString}, got Float64
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The compilers for many languages have an internal union construct for reasoning about types; Julia simply exposes
it to the programmer. The Julia compiler is able to generate efficient code in the presence of Union types with a small

number of types !, by generating specialized code in separate branches for each possible type.

A particularly useful case of a Union type is Union{T, Nothing}, where T can be any type and Nothing is the singleton
type whose only instance is the object nothing. This pattern is the Julia equivalent of Nullable, Option or Maybe types
in other languages. Declaring a function argument or a field as Union{T, Nothing} allows setting it either to a value

of type T, or to nothing to indicate that there is no value. See this FAQ entry for more information.

11.8 Parametric Types

An important and powerful feature of Julia's type system is that it is parametric: types can take parameters, so that
type declarations actually introduce a whole family of new types — one for each possible combination of parameter
values. There are many languages that support some version of generic programming, wherein data structures and
algorithms to manipulate them may be specified without specifying the exact types involved. For example, some
form of generic programming exists in ML, Haskell, Ada, Eiffel, C++, Java, C#, F#, and Scala, just to name a few.
Some of these languages support true parametric polymorphism (e.g. ML, Haskell, Scala), while others support ad-
hoc, template-based styles of generic programming (e.g. C++, Java). With so many different varieties of generic
programming and parametric types in various languages, we won't even attempt to compare Julia's parametric types
to other languages, but will instead focus on explaining Julia's system in its own right. We will note, however, that
because Julia is a dynamically typed language and doesn't need to make all type decisions at compile time, many

traditional difficulties encountered in static parametric type systems can be relatively easily handled.

All declared types (the DataType variety) can be parameterized, with the same syntax in each case. We will discuss
them in the following order: first, parametric composite types, then parametric abstract types, and finally parametric

primitive types.

Parametric Composite Types

Type parameters are introduced immediately after the type name, surrounded by curly braces:

julia> struct Point{T}
Xx::T
y::T

end

This declaration defines a new parametric type, Point{T}, holding two "coordinates" of type T. What, one may ask,
is T? Well, that's precisely the point of parametric types: it can be any type at all (or a value of any bits type,
actually, although here it's clearly used as a type). Point{Float64} is a concrete type equivalent to the type defined


https://en.wikipedia.org/wiki/Nullable_type
https://en.wikipedia.org/wiki/Generic_programming
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by replacing T in the definition of Point with Float64. Thus, this single declaration actually declares an unlimited
number of types: Point{Float64}, Point{AbstractString}, Point{Int64}, etc. Each of these is now a usable concrete

type:

julia> Point{Float64}

Point{Float64}

julia> Point{AbstractString}

Point{AbstractString}

The type Point{Float64} is a point whose coordinates are 64-bit floating-point values, while the type Point{AbstractString}

is a "point"” whose "coordinates" are string objects (see Strings).

Point itself is also a valid type object, containing all instances Point{Float64}, Point{AbstractString}, etc. as sub-

types:

julia> Point{Float64} <: Point

true

julia> Point{AbstractString} <: Point

true

Other types, of course, are not subtypes of it:

julia> Float64 <: Point

false

julia> AbstractString <: Point

false

Concrete Point types with different values of T are never subtypes of each other:

julia> Point{Float64} <: Point{Int64}

false

julia> Point{Float64} <: Point{Real}

false
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Warning

This last point is very important: even though Float64 <: Real we DO NOT have Point{Float64} <:

Point{Real}.

In other words, in the parlance of type theory, Julia's type parameters are invariant, rather than being covariant (or
even contravariant). This is for practical reasons: while any instance of Point{Float64} may conceptually be like an

instance of Point{Real} as well, the two types have different representations in memory:

+ An instance of Point{Float64} can be represented compactly and efficiently as an immediate pair of 64-bit

values;

+ An instance of Point{Real} must be able to hold any pair of instances of Real. Since objects that are instances
of Real can be of arbitrary size and structure, in practice an instance of Point{Real} must be represented as a

pair of pointers to individually allocated Real objects.

The efficiency gained by being able to store Point{Float64} objects with immediate values is magnified enormously
in the case of arrays: an Array{Float64} can be stored as a contiguous memory block of 64-bit floating-point values,
whereas an Array{Real} must be an array of pointers to individually allocated Real objects — which may well be
boxed 64-bit floating-point values, but also might be arbitrarily large, complex objects, which are declared to be

implementations of the Real abstract type.
Since Point{Float64} is not a subtype of Point{Real}, the following method can't be applied to arguments of type

Point{Float64}:

function norm(p::Point{Real})
sqrt(p.x"2 + p.y*2)

end

A correct way to define a method that accepts all arguments of type Point{T} where T is a subtype of Real is:

function norm(p::Point{<:Real})
sqrt(p.x"2 + p.y*2)

end

(Equivalently, one could define function norm(p::Point{T} where T<:Real) or function norm(p::Point{T}) where

T<:Real; see UnionAll Types.)

More examples will be discussed later in H|A =,


https://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29
https://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29
https://en.wikipedia.org/wiki/Object_type_%28object-oriented_programming%29#Boxing
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How does one construct a Point object? It is possible to define custom constructors for composite types, which will be
discussed in detail in Constructors, but in the absence of any special constructor declarations, there are two default
ways of creating new composite objects, one in which the type parameters are explicitly given and the other in which

they are implied by the arguments to the object constructor.

Since the type Point{Float64} is a concrete type equivalent to Point declared with Float64 in place of T, it can be

applied as a constructor accordingly:

julia> Point{Float64}(1.0, 2.0)

Point{Float64}(1.0, 2.0)

julia> typeof(ans)

Point{Float64}

For the default constructor, exactly one argument must be supplied for each field:

julia> Point{Float64}(1.0)
ERROR: MethodError: no method matching Point{Float64}(::Float64)
[...]

julia> Point{Float64}(1.0,2.0,3.0)
ERROR: MethodError: no method matching Point{Float64}(::Float64, ::Float64, ::Float64)
[...]

Only one default constructor is generated for parametric types, since overriding it is not possible. This constructor

accepts any arguments and converts them to the field types.

In many cases, it is redundant to provide the type of Point object one wants to construct, since the types of arguments
to the constructor call already implicitly provide type information. For that reason, you can also apply Point itself

as a constructor, provided that the implied value of the parameter type T is unambiguous:

julia> Point(1.0,2.0)

Point{Float64}(1.0, 2.0)

julia> typeof(ans)

Point{Float64}

julia> Point(1,2)

Point{Int64}(1, 2)
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julia> typeof(ans)

Point{Int64}

In the case of Point, the type of T is unambiguously implied if and only if the two arguments to Point have the same

type. When this isn't the case, the constructor will fail with a MethodError:

julia> Point(1,2.5)
ERROR: MethodError: no method matching Point(::Int64, ::Float64)
Closest candidates are:

Point(::T, !Matched::T) where T at none:2

Constructor methods to appropriately handle such mixed cases can be defined, but that will not be discussed until

later on in Constructors.

Parametric Abstract Types

Parametric abstract type declarations declare a collection of abstract types, in much the same way:

julia> abstract type Pointy{T} end

With this declaration, Pointy{T} is a distinct abstract type for each type or integer value of T. As with parametric

composite types, each such instance is a subtype of Pointy:

julia> Pointy{Int64} <: Pointy

true

julia> Pointy{1} <: Pointy

true

Parametric abstract types are invariant, much as parametric composite types are:

julia> Pointy{Float64} <: Pointy{Real}

false

julia> Pointy{Real} <: Pointy{Float64}

false
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The notation Pointy{<:Real} can be used to express the Julia analogue of a covariant type, while Pointy{>:Int} the

analogue of a contravariant type, but technically these represent sets of types (see UnionAll Types).

julia> Pointy{Float64} <: Pointy{<:Real}

true

julia> Pointy{Real} <: Pointy{>:Int}

true

Much as plain old abstract types serve to create a useful hierarchy of types over concrete types, parametric abstract
types serve the same purpose with respect to parametric composite types. We could, for example, have declared

Point{T} to be a subtype of Pointy{T} as follows:

julia> struct Point{T} <: Pointy{T}
x::T
y::T

end

Given such a declaration, for each choice of T, we have Point{T} as a subtype of Pointy{T}:

julia> Point{Float64} <: Pointy{Float64}

true

julia> Point{Real} <: Pointy{Real}

true

julia> Point{AbstractString} <: Pointy{AbstractString}

true

This relationship is also invariant:

julia> Point{Float64} <: Pointy{Real}

false

julia> Point{Float64} <: Pointy{<:Real}

true

What purpose do parametric abstract types like Pointy serve? Consider if we create a point-like implementation that

only requires a single coordinate because the point is on the diagonal line x = y:
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julia> struct DiagPoint{T} <: Pointy{T}
x::T

end

Now both Point{Float64} and DiagPoint{Float64} are implementations of the Pointy{Float64} abstraction, and sim-
ilarly for every other possible choice of type T. This allows programming to a common interface shared by all Pointy
objects, implemented for both Point and DiagPoint. This cannot be fully demonstrated, however, until we have

introduced methods and dispatch in the next section, HA|E.

There are situations where it may not make sense for type parameters to range freely over all possible types. In such

situations, one can constrain the range of T like so:

julia> abstract type Pointy{T<:Real} end

With such a declaration, it is acceptable to use any type that is a subtype of Real in place of T, but not types that are

not subtypes of Real:

julia> Pointy{Float64}

Pointy{Float64}

julia> Pointy{Real}

Pointy{Real}

julia> Pointy{AbstractString}

ERROR: TypeError: in Pointy, in T, expected T<:Real, got Type{AbstractString}

julia> Pointy{1}

ERROR: TypeError: in Pointy, in T, expected T<:Real, got Int64

Type parameters for parametric composite types can be restricted in the same manner:

struct Point{T<:Real} <: Pointy{T}
Xx::T
y::T

end

To give a real-world example of how all this parametric type machinery can be useful, here is the actual definition
of Julia's Rational immutable type (except that we omit the constructor here for simplicity), representing an exact

ratio of integers:
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struct Rational{T<:Integer} <: Real
num: :T
den::T

end

It only makes sense to take ratios of integer values, so the parameter type T is restricted to being a subtype of
Integer, and a ratio of integers represents a value on the real number line, so any Rational is an instance of the Real

abstraction.

Tuple Types

Tuples are an abstraction of the arguments of a function — without the function itself. The salient aspects of a
function's arguments are their order and their types. Therefore a tuple type is similar to a parameterized immutable
type where each parameter is the type of one field. For example, a 2-element tuple type resembles the following

immutable type:

struct Tuple2{A,B}
a::A
b::B

end

However, there are three key differences:

+ Tuple types may have any number of parameters.

« Tuple types are covariant in their parameters: Tuple{Int} is a subtype of Tuple{Any}. Therefore Tuple{Any} is

considered an abstract type, and tuple types are only concrete if their parameters are.

« Tuples do not have field names; fields are only accessed by index.

Tuple values are written with parentheses and commas. When a tuple is constructed, an appropriate tuple type is

generated on demand:

julia> typeof((1,"fo0",2.5))

Tuple{Int64,String,Float64}

Note the implications of covariance:
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julia> Tuple{Int,AbstractString} <: Tuple{Real,Any}

true

julia> Tuple{Int,AbstractString} <: Tuple{Real,Real}

false

julia> Tuple{Int,AbstractString} <: Tuple{Real,}

false

Intuitively, this corresponds to the type of a function's arguments being a subtype of the function's signature (when

the signature matches).

Vararg Tuple Types

The last parameter of a tuple type can be the special type Vararg, which denotes any number of trailing elements:

julia> mytupletype = Tuple{AbstractString,Vararg{Int}}

Tuple{AbstractString,Vararg{Int64,N} where N}

julia> isa(("1",), mytupletype)

true

julia> isa(("1",1), mytupletype)

true

julia> isa(("1",1,2), mytupletype)

true

julia> isa(("1",1,2,3.0), mytupletype)

false

Notice that Vararg{T} corresponds to zero or more elements of type T. Vararg tuple types are used to represent the

arguments accepted by varargs methods (see 7}5HQ12} SH4).

The type Vararg{T,N} corresponds to exactly N elements of type T. NTuple{N, T} is a convenient alias for Tuple{Vararg{T,N}},
i.e. a tuple type containing exactly N elements of type T.

Named Tuple Types

Named tuples are instances of the NamedTuple type, which has two parameters: a tuple of symbols giving the field

names, and a tuple type giving the field types.
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julia> typeof((a=1,b="hello"))

NamedTuple{(:a, :b),Tuple{Int64,String}}

A NamedTuple type can be used as a constructor, accepting a single tuple argument. The constructed NamedTuple type

can be either a concrete type, with both parameters specified, or a type that specifies only field names:

julia> NamedTuple{(:a, :b),Tuple{Float32, String}}((1,""))

(a=1.0f0, b="")

julia> NamedTuple{(:a, :b)}((1,"™))

(@a=1,b=""

If field types are specified, the arguments are converted. Otherwise the types of the arguments are used directly.

Singleton Types

There is a special kind of abstract parametric type that must be mentioned here: singleton types. For each type, T,
the "singleton type" Type{T} is an abstract type whose only instance is the object T. Since the definition is a little

difficult to parse, let's look at some examples:

julia> isa(Float64, Type{Float64})

true

julia> isa(Real, Type{Float64})

false

julia> isa(Real, Type{Real})

true

julia> isa(Float64, Type{Real})

false

In other words, isa(A,Type{B}) is true if and only if A and B are the same object and that object is a type. Without the

parameter, Type is simply an abstract type which has all type objects as its instances, including, of course, singleton

types:

julia> isa(Type{Float64}, Type)

true
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julia> isa(Float64, Type)

true

julia> isa(Real, Type)

true

Any object that is not a type is not an instance of Type:

julia> isa(l, Type)

false

julia> isa("foo", Type)

false

Until we discuss Parametric Methods and conversions, it is difficult to explain the utility of the singleton type
construct, but in short, it allows one to specialize function behavior on specific type values. This is useful for writing
methods (especially parametric ones) whose behavior depends on a type that is given as an explicit argument rather

than implied by the type of one of its arguments.

A few popular languages have singleton types, including Haskell, Scala and Ruby. In general usage, the term "sin-
gleton type" refers to a type whose only instance is a single value. This meaning applies to Julia's singleton types,

but with that caveat that only type objects have singleton types.

Parametric Primitive Types
Primitive types can also be declared parametrically. For example, pointers are represented as primitive types which

would be declared in Julia like this:

# 32-bit system:

primitive type Ptr{T} 32 end

# 64-bit system:

primitive type Ptr{T} 64 end

The slightly odd feature of these declarations as compared to typical parametric composite types, is that the type
parameter T is not used in the definition of the type itself — it is just an abstract tag, essentially defining an en-
tire family of types with identical structure, differentiated only by their type parameter. Thus, Ptr{Float64} and
Ptr{Int64} are distinct types, even though they have identical representations. And of course, all specific pointer

types are subtypes of the umbrella Ptr type:
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julia> Ptr{Float64} <: Ptr

true

julia> Ptr{Int64} <: Ptr

true

11.9 UnionAll Types

We have said that a parametric type like Ptr acts as a supertype of all its instances (Ptr{Int64} etc.). How does this
work? Ptr itself cannot be a normal data type, since without knowing the type of the referenced data the type clearly
cannot be used for memory operations. The answer is that Ptr (or other parametric types like Array) is a different

kind of type called a UnionAll type. Such a type expresses the iterated union of types for all values of some parameter.

UnionAll types are usually written using the keyword where. For example Ptr could be more accurately written as
Ptr{T} where T, meaning all values whose type is Ptr{T} for some value of T. In this context, the parameter T is also
often called a "type variable" since it is like a variable that ranges over types. Each where introduces a single type
variable, so these expressions are nested for types with multiple parameters, for example Array{T,N} where N where

T.

The type application syntax A{B,C} requires A to be a UnionAll type, and first substitutes B for the outermost type
variable in A. The result is expected to be another UnionAll type, into which C is then substituted. So A{B,C} is
equivalent to A{B}{C}. This explains why it is possible to partially instantiate a type, as in Array{Float64}: the first
parameter value has been fixed, but the second still ranges over all possible values. Using explicit where syntax, any
subset of parameters can be fixed. For example, the type of all 1-dimensional arrays can be written as Array{T,1}

where T.

Type variables can be restricted with subtype relations. Array{T} where T<:Integer refersto all arrays whose element
type is some kind of Integer. The syntax Array{<:Integer} is a convenient shorthand for Array{T} where T<:Integer.
Type variables can have both lower and upper bounds. Array{T} where Int<:T<:Number refers to all arrays of Numbers
that are able to contain Ints (since T must be at least as big as Int). The syntax where T>:Int also works to specify

only the lower bound of a type variable, and Array{>:Int} is equivalent to Array{T} where T>:Int.

Since where expressions nest, type variable bounds can refer to outer type variables. For example Tuple{T,Array{S}}
where S<:AbstractArray{T} where T<:Real refers to 2-tuples whose first element is some Real, and whose second

element is an Array of any kind of array whose element type contains the type of the first tuple element.
The where keyword itself can be nested inside a more complex declaration. For example, consider the two types

created by the following declarations:

julia> const T1 = Array{Array{T,1} where T, 1}

Array{Array{T,1} where T,1}



156 CHAPTER 11. TYPES

julia> const T2 = Array{Array{T,1}, 1} where T

Array{Array{T,1},1} where T

Type T1 defines a 1-dimensional array of 1-dimensional arrays; each of the inner arrays consists of objects of the
same type, but this type may vary from one inner array to the next. On the other hand, type T2 defines a 1-dimensional
array of 1-dimensional arrays all of whose inner arrays must have the same type. Note that T2 is an abstract type,
e.g., Array{Array{Int,1},1} <: T2, whereas T1 is a concrete type. As a consequence, T1 can be constructed with a

zero-argument constructor a=T1() but T2 cannot.

There is a convenient syntax for naming such types, similar to the short form of function definition syntax:

Vector{T} = Array{T,1}

This is equivalent to const Vector = Array{T,1} where T. Writing Vector{Float64} is equivalent to writing Array{Float64,1},
and the umbrella type Vector has as instances all Array objects where the second parameter — the number of array
dimensions — is 1, regardless of what the element type is. In languages where parametric types must always be
specified in full, this is not especially helpful, but in Julia, this allows one to write just Vector for the abstract type

including all one-dimensional dense arrays of any element type.

11.10 Type Aliases

Sometimes it is convenient to introduce a new name for an already expressible type. This can be done with a simple
assignment statement. For example, UInt is aliased to either UInt32 or UInt64 as is appropriate for the size of pointers

on the system:

# 32-bit system:
julia> UInt

UInt32

# 64-bit system:

julia> UInt

UInt64

This is accomplished via the following code in base/boot.j1:

if Int === Int64

const UInt = UInt64
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else
const UInt = UInt32

end

Of course, this depends on what Int is aliased to — but that is predefined to be the correct type — either Int32 or Int64,

(Note that unlike Int, Float does not exist as a type alias for a specific sized AbstractFloat. Unlike with integer
registers, where the size of Int reflects the size of a native pointer on that machine, the floating point register sizes

are specified by the IEEE-754 standard.)

11.11 Operations on Types

Since types in Julia are themselves objects, ordinary functions can operate on them. Some functions that are par-
ticularly useful for working with or exploring types have already been introduced, such as the <: operator, which

indicates whether its left hand operand is a subtype of its right hand operand.

The isa function tests if an object is of a given type and returns true or false:

julia> isa(l, Int)

true

julia> isa(l, AbstractFloat)

false

The typeof function, already used throughout the manual in examples, returns the type of its argument. Since, as

noted above, types are objects, they also have types, and we can ask what their types are:

julia> typeof(Rational{Int})

DataType

julia> typeof(Union{Real,String})

Union

What if we repeat the process? What is the type of a type of a type? As it happens, types are all composite values

and thus all have a type of DataType:

julia> typeof(DataType)

DataType
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julia> typeof(Union)
DataType
DataType is its own type.

Another operation that applies to some types is supertype, which reveals a type's supertype. Only declared types

(DataType) have unambiguous supertypes:

julia> supertype(Float64)

AbstractFloat

julia> supertype(Number)

Any

julia> supertype(AbstractString)

Any

julia> supertype(Any)

Any

If you apply supertype to other type objects (or non-type objects), a MethodError is raised:

julia> supertype(Union{Float64,Int64})
ERROR: MethodError: no method matching supertype(::Type{Union{Float64, Int64}})
Closest candidates are:

supertype(!Matched: :DataType) at operators.jl:42

supertype(!Matched: :UnionAll) at operators.jl:47

11.12 Custom pretty-printing

Often, one wants to customize how instances of a type are displayed. This is accomplished by overloading the show

function. For example, suppose we define a type to represent complex numbers in polar form:

julia> struct Polar{T<:Real} <: Number
r::T
0::T

end

julia> Polar(r::Real,0::Real) = Polar(promote(r,0)...)

Polar
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Here, we've added a custom constructor function so that it can take arguments of different Real types and promote
them to a common type (see Constructors and Conversion and Promotion). (Of course, we would have to define
lots of other methods, too, to make it act like a Number, e.g. +, *, one, zero, promotion rules and so on.) By default,
instances of this type display rather simply, with information about the type name and the field values, as e.g.

Polar{Float64}(3.0,4.0).

If we want it to display instead as 3.0 * exp(4.0im), we would define the following method to print the object to a

given output object io (representing a file, terminal, buffer, etcetera; see Networking and Streams):

julia> Base.show(io::I0, z::Polar) = print(io, z.r, " * exp(", z.0, "im)")

More fine-grained control over display of Polar objects is possible. In particular, sometimes one wants both a verbose
multi-line printing format, used for displaying a single object in the REPL and other interactive environments, and
also a more compact single-line format used for print or for displaying the object as part of another object (e.g. in
an array). Although by default the show(io, z) function is called in both cases, you can define a different multi-line
format for displaying an object by overloading a three-argument form of show that takes the text/plain MIME type

as its second argument (see Multimedia I/0), for example:

julia> Base.show(io::I0, ::MIME"text/plain", z::Polar{T}) where{T} =

print(io, "Polar{$T} complex number:\n ", z)

(Note that print(..., z) here will call the 2-argument show(io, z) method.) This results in:

julia> Polar(3, 4.0)
Polar{Float64} complex number:

3.0 * exp(4.0im)

julia> [Polar(3, 4.0), Polar(4.0,5.3)]
2-element Array{Polar{Float64},1}:
3.0 * exp(4.0im)

4.0 * exp(5.3im)

where the single-line show(io, z) form is still used for an array of Polar values. Technically, the REPL calls
display(z) to display the result of executing a line, which defaults to show(stdout, MIME("text/plain"), z), which
in turn defaults to show(stdout, z), but you should not define new display methods unless you are defining a new

multimedia display handler (see Multimedia 1/0).

Moreover, you can also define show methods for other MIME types in order to enable richer display (HTML, images,
etcetera) of objects in environments that support this (e.g. 1Julia). For example, we can define formatted HTML

display of Polar objects, with superscripts and italics, via:
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julia> Base.show(io::I0, ::MIME"text/html", z::Polar{T}) where {T} =

println(io, "<code>Polar{$T}</code> complex number: ",

z.r, " <i>e</ix<sup>", z.0, " <i>i</i></sup>")

A Polar object will then display automatically using HTML in an environment that supports HTML display, but you

can call show manually to get HTML output if you want:

julia> show(stdout, "text/html", Polar(3.0,4.0))

<code>Polar{Float64}</code> complex number: 3.0 <i>e</i><sup>4.0 <i>i</i></sup>

As a rule of thumb, the single-line show method should print a valid Julia expression for creating the shown object.
When this show method contains infix operators, such as the multiplication operator (%) in our single-line show method
for Polar above, it may not parse correctly when printed as part of another object. To see this, consider the expression

object (see Program representation) which takes the square of a specific instance of our Polar type:
julia> a = Polar(3, 4.0)
Polar{Float64} complex number:

3.0 * exp(4.0im)

julia> print(:($a~2))

3.0 * exp(4.0im) "~ 2

Because the operator ~ has higher precedence than * (see Operator Precedence and Associativity), this output does
not faithfully represent the expression a ~ 2 which should be equal to (3.0 * exp(4.8im)) ~ 2. To solve this issue,
we must make a custom method for Base.show_unquoted(io::I0, z::Polar, indent::Int, precedence::Int), which

is called internally by the expression object when printing:

julia> function Base.show_unquoted(io::I0, z::Polar, ::Int, precedence::Int)
if Base.operator_precedence(:*) <= precedence
print(io, "(")
show(io, z)
print(io, ")")
else
show(io, z)
end

end

julia> :(%a™2)

:((3.0 * exp(4.0im)) ~ 2)
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The method defined above adds parentheses around the call to show when the precedence of the calling operator is
higher than or equal to the precedence of multiplication. This check allows expressions which parse correctly without

the parentheses (such as : ($a + 2) and :($a == 2)) to omit them when printing:

julia> :($a + 2)

:(3.0 * exp(4.0im) + 2)

julia> :(%a == 2)

:(3.0 * exp(4.0im) == 2)

In some cases, it is useful to adjust the behavior of show methods depending on the context. This can be achieved via
the I0Context type, which allows passing contextual properties together with a wrapped 10 stream. For example, we
can build a shorter representation in our show method when the :compact property is set to true, falling back to the

long representation if the property is false or absent:

julia> function Base.show(io::I0, z::Polar)
if get(io, :compact, false)
print(io, z.r, " ", z.0, "im")
else
print(io, z.r, " * exp(", z.0, "im)")
end

end

This new compact representation will be used when the passed IO stream is an I0Context object with the :compact
property set. In particular, this is the case when printing arrays with multiple columns (where horizontal space is

limited):

julia> show(IOContext(stdout, :compact=>true), Polar(3, 4.0))

3.0 4.0im

julia> [Polar(3, 4.0) Polar(4.0,5.3)]
1x2 Array{Polar{Float64},2}:

3.0 4.0im 4.0 5.3im

See the I0Context documentation for a list of common properties which can be used to adjust printing.



162 CHAPTER 11. TYPES

11.13 "Value types"

In Julia, you can't dispatch on a value such as true or false. However, you can dispatch on parametric types, and
Julia allows you to include "plain bits" values (Types, Symbols, Integers, floating-point numbers, tuples, etc.) as type
parameters. A common example is the dimensionality parameter in Array{T,N}, where T is a type (e.g., Float64) but

N is just an Int.

You can create your own custom types that take values as parameters, and use them to control dispatch of custom
types. By way of illustration of this idea, let's introduce a parametric type, Val{x}, and a constructor Val(x) =
Val{x}(), which serves as a customary way to exploit this technique for cases where you don't need a more elaborate

hierarchy.

Val is defined as:

julia> struct Val{x}

end

julia> Val(x) = Val{x}()

Val

There is no more to the implementation of Val than this. Some functions in Julia's standard library accept Val

instances as arguments, and you can also use it to write your own functions. For example:

julia> firstlast(::val{true}) = "First"

firstlast (generic function with 1 method)

julia> firstlast(::val{false}) = "Last"

firstlast (generic function with 2 methods)

julia> firstlast(val(true))

"First"

julia> firstlast(val(false))

"Last"

For consistency across Julia, the call site should always pass a Valinstance rather than using a type, i.e., use foo(Val(:bar))

rather than foo(Val{:bar}).

It's worth noting that it's extremely easy to mis-use parametric "value" types, including Val; in unfavorable cases,

you can easily end up making the performance of your code much worse. In particular, you would never want to
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write actual code as illustrated above. For more information about the proper (and improper) uses of Val, please read

the more extensive discussion in the performance tips.

1"Small" is defined by the MAX_UNION_SPLITTING constant, which is currently set to 4.
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julia> f(x::Float64, y::Float64) = 2x + y

f (generic function with 1 method)
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julia> f(2.0, 3.0)

7.0
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julia> f(2.0, 3)

ERROR: MethodError: no method matching f(::Float64, ::Int64)
Closest candidates are:

f(::Float64, !Matched::Float64) at none:1

julia> f(Float32(2.0), 3.0)
ERROR: MethodError: no method matching f(::Float32, ::Float64)
Closest candidates are:

f(!Matched: :Float64, ::Float64) at none:1

julia> f(2.0, "3.0")
ERROR: MethodError: no method matching f(::Float64, ::String)
Closest candidates are:

f(::Float64, !Matched::Float64) at none:1

julia> f("2.0", "3.0")

ERROR: MethodError: no method matching f(::String, ::String)
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julia> f(x::Number, y::Number) = 2x -y

f (generic function with 2 methods)

julia> f(2.0, 3)

1.0
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julia> f(2.0, 3.0)

7.0

julia> f(2, 3.0)

1.0

julia> f(2.0, 3)

1.0

julia> f(2, 3)

1
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julia> f("foo", 3)

ERROR: MethodError: no method matching f(::String, ::Int64)
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Closest candidates are:

f(!Matched: :Number, ::Number) at none:1

julia> f()
ERROR: MethodError: no method matching f()
Closest candidates are:

f(!Matched: :Float64, !Matched::Float64) at none:1

f(!Matched: :Number, !Matched::Number) at none:1
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julia> f

f (generic function with 2 methods)
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julia> methods(f)
# 2 methods for generic function "f":
[1] f(x::Float64, y::Float64) in Main at none:1

[2] f(x::Number, y::Number) in Main at none:1
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julia> f(x,y) = println("Whoa there, Nelly.")

f (generic function with 3 methods)

julia> f("foo", 1)

Whoa there, Nelly.
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julia> methods(+)

# 180 methods for generic function "+":

[1] +(x::Bool, z::Complex{Bool}) in Base at complex.jl:227

[2] +(x::Bool, y::Bool) in Base at bool.j1:89

[3] +(x::Bool) in Base at bool.jl:86

[4] +(x::Bool, y::T) where T<:AbstractFloat in Base at bool.j1:96

[5] +(x::Bool, z::Complex) in Base at complex.jl:234

[6] +(a::Floatl6, b::Floatl6) in Base at float.jl:373

[7] +(x::Float32, y::Float32) in Base at float.jl:375

[8] +(x::Float64, y::Float64) in Base at float.jl:376

[9] +(z::Complex{Bool}, x::Bool) in Base at complex.jl:228

[10] +(z::Complex{Bool}, x::Real) in Base at complex.jl:242

[11] +(x::Char, y::Integer) in Base at char.jl:40

[12] +(c::BigInt, x::BigFloat) in Base.MPFR at mpfr.jl:307

[13] +(a::BigInt, b::BigInt, c::BigInt, d::BigInt, e::BigInt) in Base.GMP at gmp.j1:392
[14] +(a::BigInt, b::BigInt, c::BigInt, d::BigInt) in Base.GMP at gmp.j1:391
[15] +(a::BigInt, b::BigInt, c::BigInt) in Base.GMP at gmp.j1:390

[16] +(x::BigInt, y::BigInt) in Base.GMP at gmp.jl:361

[17] +(x::BigInt, c::Union{UInt16, UInt32, UInt64, UInt8}) in Base.GMP at gmp.j1:398

[180] +(a, b, c, xs...) in Base at operators.jl:424
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julia> g(x::Float64, y) = 2x + vy

g (generic function with 1 method)

julia> g(x, y::Float64) = x + 2y

g (generic function with 2 methods)

julia> g(2.0, 3)

7.0

julia> g(2, 3.0)
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8.0

julia> g(2.0, 3.0)

ERROR: MethodError: g(::Float64, ::Float64) is ambiguous. Candidates:
g(x, y::Float64) in Main at none:1
g(x::Float64, y) in Main at none:1

Possible fix, define

g(::Float64, ::Float64)

(Float64, Any) E= g (Any, Float64) DX o] Qs 2] & £ 9loH, ok £& T
g
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julia> g(x::Float64, y::Float64) = 2x + 2y

g (generic function with 3 methods)

julia> g(2.0, 3)

7.0

julia> g(2, 3.0)

8.0

julia> g(2.0, 3.0)

10.0

AA|ZQl ARt 2R Wo] Hol Y uptx] BEAo] A5k ol BEAE AIsHe WS WA Holshe 2ol
Faug

U 25 a2 2 4RI £ 848 2y of A= ofh oM ©f AFAM5] thRof Hu.

12.3 i EE fAME

i

WM ol MeHo2 MYS Gshs ol Wag 7 4 gadrk

julia> same_type(x::T, y::T) where {T} = true

same_type (generic function with 1 method)

julia> same_type(x,y) = false

same_type (generic function with 2 methods)
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julia> same_type(1, 2)

julia> same_type(1l, 2.0)

false

julia> same_type(1.0, 2.0)

true

julia> same_type("foo", 2.0)

false

julia> same_type("foo", "bar")

true

julia> same_type(Int32(1), Int64(2))

false
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julia> myappend(v::Vector{T}, x::T) where {T} = [v..., x]

myappend (generic function with 1 method)

julia> myappend([1,2,3],4)
4-element Array{Int64,1}:
1

2

julia> myappend([1,2,3],2.5)
ERROR: MethodError: no method matching myappend(::Array{Int64,1}, ::Float64)

Closest candidates are:
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myappend(: :Array{T,1}, !Matched::T) where T at none:1

julia> myappend([1.0,2.0,3.0],4.0)
4-element Array{Float64,1}:

1.0

2.0

3.0

4.0

julia> myappend([1.0,2.0,3.0],4)
ERROR: MethodError: no method matching myappend(::Array{Float64,1}, ::Int64)
Closest candidates are:

myappend(: :Array{T,1}, !Matched::T) where T at none:1
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julia> mytypeof(x::T) where {T} = T

mytypeof (generic function with 1 method)

julia> mytypeof(1)

Int64

julia> mytypeof(1.0)

Float64
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julia> same_type_numeric(x::T, y::T) where {T<:Number} = true

same_type_numeric (generic function with 1 method)

julia> same_type_numeric(x::Number, y::Number) = false

same_type_numeric (generic function with 2 methods)

julia> same_type_numeric(1, 2)

true

julia> same_type_numeric(1l, 2.0)
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false

julia> same_type_numeric(1.0, 2.0)

true

julia> same_type_numeric("foo", 2.0)
ERROR: MethodError: no method matching same_type_numeric(::String, ::Float64)
Closest candidates are:

same_type_numeric(!Matched::T, ::T) where T<:Number at none:1

same_type_numeric(!Matched: :Number, ::Number) at none:1

julia> same_type_numeric("foo", "bar")

ERROR: MethodError: no method matching same_type_numeric(::String, ::String)

julia> same_type_numeric(Int32(1), Int64(2))

false
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julia> function tryeval()
@eval newfun() = 1
newfun()
end

tryeval (generic function with 1 method)

julia> tryeval()
ERROR: MethodError: no method matching newfun()

The applicable method may be too new: running in world age xxxx1, while current world is xxxx2.
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Closest candidates are:

newfun() at none:1 (method too new to be called from this world context.)

in tryeval() at none:1

julia> newfun()

1
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LR U,

0] £2Ho] FHL "AIA| Alth FH2E"YUTto] T2 271 ghe 7 HME HO| AANS 2HTHLE o]
SFoIM 2 2UAE IME FO NE"S TP 22 E= "world age"2 HY &+ UFUSE E3H A

QL vl W 4 J&UTH 9 ofAolA] "current world" ("newfun" HIAE7} Q=)= tryeval

worldsof| A }\}"géa} _}I\_M o u = A

Aol Al ol £ = 2] 22 "HERY @74 2ot 2 AUt

2+ 0|72 mohs 210l 2RI (€ S0 919 REPLE 13otE Z2). HHRls| & 42 siA30] JIEUTE: Base. invokelatestE
AHE5t0] B8 EEGHIAIR

julia> function tryeval2()
@eval newfun2() =
Base.invokelatest(newfun2)
end

tryeval2 (generic function with 1 method)

julia> tryeval2()
2

oRARte 2, o #2lo] HEEE & o 24T oIS 21 ERSUD XHgolls st HAES 7R ls g4 f()

=
FERIEE
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ra

jutia> F() = "7 Hel"

f (generic function with 1 method)

f (0B AFGStE T2 QS A

julia> g(x) = f(x)

g (generic function with 1 method)

julia> t = @async f(wait()); yield();

OlAl R]=f (x)oll R 712 M2 HMES 27ty :

julia> f(x::Int) = "Int2 HOo|"

f (generic function with 2 methods)

julia> f(x::Type{Int}) = "Type{Int}= ZHo|"

f (generic function with 3 methods)

Zp} ojEA| T} ] Bl Alck:

julia> f(1)

"Int2 Hol"

julia> g(1)

"Int2 Ao

julia> fetch(schedule(t, 1))

"IlE Yo

julia> t = @async f(wait()); yield();

julia> fetch(schedule(t, 1))

"Int2 Aol"
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super-type Of|A] type Uh7f B3 23

017] AbstractArray 9] 12|9] 59| RF2 24 /Y T S vIEls7| 9|9 28t FE "HES0] JgUHh:

abstract type AbstractArray{T, N} end

eltype(::Type{<:AbstractArray{T}}) where {T} = T

Azt mpaE AR EUT o€ S01 T 7} UnionAll EFY Q1 Z20f] 253D eltype(Array{T} where T <: Integer) O]
Any 7} ¥FtElLIT (Base Of| Q)% eltype O H{HE DRREZRX|QJUCh.

2210t v0.6011M 2 THA0] £ oMol fUeh SHIE WHOINE E oE Y2 v gyt

abstract type AbstractArray{T, N} end
eltype(::Type{AbstractArray}) = Any
eltype(::Type{AbstractArray{T}}) where {T} = T
eltype(::Type{AbstractArray{T, N}}) where {T, N} = T

eltype(::Type{A}) where {A<:AbstractArray} = eltype(supertype(A))

eltype(::Type{AbstractArray{T, N} where {T<:S, N<:M}}) where {M, S} = Any
eltype(::Type{AbstractArray{T, N} where {T<:S}}) where {N, S} = Any
eltype(::Type{AbstractArray{T, N} where {N<:M}}) where {M, T} =T
eltype(::Type{AbstractArray{T, N}}) where {T, N} = T

eltype(::Type{A}) where {A <: AbstractArray} = eltype(supertype(A))

Aurzel A4 3 St Uy FAE A8St0] 24 82 2 AUt

eltype_wrong(: :Type{A}) where {A<:AbstractArray} = A.parameters[1]

a2iu} o]zio] Hifg FeE UEs A

ol x| P&k

rlo

struct BitVector <: AbstractArray{Bool, 1}; end

0171M 2] th7l W5 7H1A] @ BitVector BHYS TS UAIT, element-typeo] 01745] &M A=A T = Bool

3 2&Uch
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convert(AbstractArray{Eltype}, input)
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Core.add(a, b)

)

ZMIAo 2

o

+(promote(a, b)..

o,

:Float64, b::Float64)

2 =
=

=
=

+(a::Matrix, b::Matrix) = map(+, a, b)

# 12 ot
+(a, b)
# off
+(a:
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Trait-based T]ATf%]

919] iterated TATHXIE HAAA S5 BAAZO) BT W STHQ UYL YA @ 29 A5

sl AE] 27} 8 4 gaU ek 24

E
Jo
ol
1o
N
il
fjo
X
ox
ol
ol
Q
|
i)
rot
N
kel
o 4

017 MM 9| oAl map Y promoted] FHANRAIG}S HH
Fo3 2ol HYLS vE T U 228 YR F S HolEE
Base.IndexStyle PAS FAY W map 2} 22 THE S 020 235'-5 BUiA 29 LS AU (Abstract
Array Interface). &, gutyo+ E

nap o ALg AP 7Y Bast

L
a
o
4
Am
ox
rlo
=)
i)
rol
Am
ox
2
=)
i)
_|
oft
n:ol'
I
0
3
Q
k=]
1o

map(f, a::AbstractArray, b::AbstractArray) = map(Base.IndexStyle(a, b), f, a, b)
# ezl 33
map(: :Base.IndexCartesian, f, a::AbstractArray, b::AbstractArray) =

# MY QY P8 (O WE)

[ ]

ogl

map(: :Base.IndexLinear, f, a::AbstractArray, b::AbstractArray) =

0] trait-based HIHE AZke} + of] QJ5 A = promote AU 2= 23Ut 0]Z1L promote_type & AMRSH=t],

N

A

2

trait-based T2 2 40] i3t 01 TS CIAQIHO 20 WS MBI HEAA AFSUF 2 84 §

ogt

27} 22 712 ik F@] U pronote_type B4 ALB3I0] Yt ZALFS AL (0T ORI +

E
SZ2 promote EE0[|A] O]ZAS BEFSULY).

—_
Ea)

21259 Aol SJal Y= IHO Arts U= 22 4 op & AU

2. Zy} 3Ho] Q4 EFQ R Spromote_op (op, argument_types ...) = AARIUCh 0§74 argument_types & Zt
U Yol A2 eltype oA AAHHUCH


https://github.com/JuliaLang/julia/issues/2345#issuecomment-54537633
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e
ol
o
rlr
_):]_l‘
e
o
<
i

3. &3 HHS similar(R, dims) 2 TF5UT} 0f7]|A] dims & &3 yjjgo

For a more specific example, a generic square-matrix multiply pseudo-code might look like:

Z O A ol & S0, LRHA

lIl’-I
o

- AT pseudoT = THS T LT

function matmul(a::AbstractMatrix, b::AbstractMatrix)

op = (ai, bi) -> ai * bi + ai * bi

ot

fL|CH.

Mw
Hr

## 0|42 “one(eltype (a))” 7t MM JtsstCia J7tYsty| W20 =
# R = typeof(op(one(eltype(a)), one(eltype(b))))

# 0|22 a [11°0] UCHA 7hYSH7| MR Hujsty, BEol BE 245 LIENY| HE0 ZoigLtt

=

# R = typeof(op(a[1], b[1]))

# O| A2 “+ 7t “promote_type” & SZSICt1 71A517| W20 SHEZR| SF&L|Ct.
## Jl2{Lf Booldt Z2 LR [ANM= 1HA ASULC.:

= promote_type(ai, bi)

# Bt F29 HrE ol met o sty W20 FREASHC. (RAHIE 2722 OfL2}):

# R = Base.return_types(op, (eltype(a), eltype(b)))

#H MM ZB2 o|ALCE.:

R = promote_op(op, eltype(a), eltype(b))

oH
net
4
|.r|
30
>
0
00

>
o
o
riu
40

By
o
2
oH
el
r
o

H M2E Yshs RYELC H 2 RS Al

output = similar(b, R, (size(a, 1), size(b, 2)))
if size(a, 2) > 0
for j in 1:size(b, 2)
for i in 1:size(a, 1)
# 07| "R = “Any’, “zero(Any)s = HO|E|| 97| E{Z0 “ab = zero(R)' S AMRSIA| Y&LICEH.
# 2| = LSt typeof (a * b)! = typeof (a * b + a *x b) == RO| 7}55}7| W20 “ab::R™ & MAHSIH
— RIZOM “ab’ of EfYS &= TS O{OFRfL L.
ab::R = a[i, 1] * b[1, j]
for k in 2:size(a, 2)
ab += a[i, k] * b[k, j]
end
output[i, j] = ab
end

end
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end

return output

o7 o 2 ZehA aolA Wet 8 ) UehLh: 35 WU 2uelZo] AA2 Nk B4 94 98oE wakgUr

complexfunction(arg::Int) = ...

complexfunction(arg: :Any) = complexfunction(convert(Int, arg))

matmul(a::T, b::T) = ...

matmul(a, b) = matmul(promote(a, b)...)

12.6 U7EI&A 02 A5 Varargs HIAE

SuESE 12014 240] A e ARl 48 AStSIE O] AT $& Q&L Vararg {T, N} E7]He Tei3t

Aloke LERY] Sish AF2EYTE. of):

julia> bar(a,b,x::Vararg{Any,2}) = (a,b,x)

bar (generic function with 1 method)

julia> bar(1,2,3)
ERROR: MethodError: no method matching bar(::Int64, ::Int64, ::Int64)
Closest candidates are:

bar(::Any, ::Any, ::Any, !Matched::Any) at none:1

julia> bar(1,2,3,4)

(1, 2, (3, 4))

julia> bar(1,2,3,4,5)
ERROR: MethodError: no method matching bar(::Int64, ::Int64, ::Int64, ::Int64, ::Int64)

Closest candidates are:

bar(::Any, ::Any, ::Any, ::Any) at none:1

BT} 9851 TefulElo] 013 varargs HIMES Aasts 210] 7Es UL, o
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ok
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+function getindex(A::AbstractArray{T,N}, indices::Vararg{Number,N}) where {T,N}

indices 9] 27} i 9| AT V) & wEr T2 P},

92 A2 H QIte] EfQIgto] H|okS wolo} & ) Vararg{T} £ T... & 20| £ 2 &L} ol2 S0}, f(x::Int ...) =

X = f(x::Vararg{Int}) = x 9] £7|QUc},

oSN =14

AL A

>

00|'

127 FIQE A% 41 Akl of

rol

Functions oll4 7] SAEis0] AEiE Qlak of2] tiMEYe|o 1202 THELE o2 Sof, o] Hoj TS

2&U.

f(a=1,b=2) = a+2b

EER R SCERE R

f(a,b) = a+2b
f(a) = f(a,2)
fO = f(1,2)

This means that calling f() is equivalent to calling f(1,2). In this case the result is 5, because f(1,2) invokes the first
method of f above. However, this need not always be the case. If you define a fourth method that is more specialized
for integers: O]Z2 f() & SE3he 20| 1(1,2) & 2&3dte 2 SYsiHE ZiS Auigynt.o] 3¢ aesgduct
PISHR £(1,2) 7} 919 £ O] 3 WM WIME S 32l mRunh Tei, P4 13 218 ofduc). Yioluct 543 8
ol i) M E S ojsk Theat 2t

f(a::Int,b::Int) = a-2b

rr
:Oulz."
ofl
oo
=
lo
Jm

3

HIAMEZ} obd gheof] ABFHH. 222 HMETL

fO 9 £(1,2) o ZTHe -3 QUL 3, A 914 Y
2 FOI5IR A 9l40] S3o] Heto] W B 4%

=R S U5 Fejol] 2T}, A=A Q4

glguick

o
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i

FIE Qaee LEHRl 93] el AFs] tEA AEguth. 53], WME Hamiz]of] Fojsta] FeUth HMEE

L5k HAMEZAPE | Sofl A5 7I9E A48 71 AXIAeol 719istod E&gunt
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1910 Al olMEE 27ksl0] gojo] Zalot AHAE 'S E7S" B B & YEUrt (ol2is

julia> struct Polynomial{R}
coeffs::Vector{R}

end

julia> function (p::Polynomial)(x)
v = p.coeffs[end]
for i = (length(p.coeffs)-1):-1:1
v = v¥x + p.coeffs[i]
end
return v

end

julia> (p::Polynomial) () = p(5)

StaL o2 thil EfQlo 2 Z|¥E LT} As with normal functions there is a terse syntax form. S}

o A5 UERUICE CHHA 2 That 2o] A8 E 4 Utk

julia> p = Polynomial([1,10,100])

Polynomial{Int64}([1, 10, 100])

julia> p(3)
931

julia> pQ)

2551

)7t Z2Jotol| A o ZA 25 Sh=21E Bk SAlol7I=gyH.

ol iFtIE S I RS 3R A (R B2 RS R 4

U2 SIAEE 271511 91 ANHelAE EYUSH: Zlo] S83IE ULk olzie Qo) Polet 78S Relstes]
AHEE 4 YEUTH BME EE 2ToLEHS 98 28 B 25 &Y 0295 2Ye %ol ESolgls Yfunction
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function emptyfunc
end
12.10 ¥ 2A L 25357
Zejo] Wy T 7h ZE 715 & solAgho] 9 ol8sts AL Al ofeigg o] & 4 gyt
£5]. 20 BT HIME AE FROIME 227 (ambiguities) 0] Wistes 9= EgUth oM, 2E24S siZ2E &

f(x, y::Int) =1
f(x::Int, y) = 2

f(x::Int, y::Int) = 3

olzie 2% SulE WAL JgUct Tefuto] 2912 WRHO 2 w2t Jo] WIPAHY % gl Agol YUt £,
U4t 49 AT B2 48 B4 Hs 0] AYULL TN ASTE} T oAl XY i) Hetol sl

=2 =}
AEsH ‘2shs 210l ka7t )l U offoll M= £ A< oliet ZAIE 2 +2le 2 7HA tieks =2yt

52 2 NTuple 914

Tuple (127 NTuple) Q1AHE SWS £ AIAGLCE. o] Sof,

f(x::NTuple{N,Int}) where {N} = 1

f(x::NTuple{N,Float64}) where {N} = 2

N==02 7}5 W20 © SBITHA :Int L} Float64 #15j0] SZE|ojof 5l=x|2 At 2471 Q&U R4S sl

Sfl 3 742 e ¥l EZol gt oAM= S Yolske iU,

f(x::Tuple{}) = 3

tA
rlr
-Ol

St HIMES A Qjeh ZE HIAME thall Hoj & shte] 2471 720l AT 28 & 4 AU

f(x::NTuple{N,Int}) where {N} = 1 # 0|Ade A ZYLCt.

f(x::Tuple{Float64, Vararg{Float64}}) = 2 # ZO|% SIL}2| Float647} & QgHL|C}.
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Ol g9 A5 HAIH|GH = J2 Y ul "wrapper'7|50] Bt H&ot GAIE & 4 Q2] 22siordunt. oS 59 01
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f(x::A, y::A) =
f(x, y) = F(g(x), 9(y))

o2 e 219 4| (orthogonal design)2]

f(x::T, y::T) where {T} = ...

f(x, y) = f(promote(x, y)...)

ol HIxIQI9] 3 7HX] S1Ee x 9ty B 22 SO R Wl HYS T2 Wo] glow £ WA wo] Rats| yhEElof

28 QW 27} E2)A © 4 9ITHe AU

ra

H0] L] Q142 TjAH]

pid

012] Q15 HEsokstAY 7Heet B2 WS Pt fJe UR W2 22 AH8dhe W2 tiAll AI2-0IE FRoll=
) 2 =t

"name cascade"S £l5t0] (02 &

f(x::A, y) = _fA(X, y)

f(x::B, y) = _fB(x, y)

322 R HIME _fA S _fB = x of thall A2 2ot He u2i5tA] @ity of Hamiz] & 4 Qlguynt

o] HMEfoll= 4 shfolde Q5 THo] QAEUT: T2 HL, AL exported$t 4 £ 9] 271 E45HE Josto] f
9] 522 ZIIE AFEARY Y & 4 glSUTt thAl R HIME _fA 9 _fB of] Theh 23S JJslokstt, o] exportedst
HAME S} exportedst HIME Ato]9] 28 S|/ ThgUT.


https://en.wikipedia.org/wiki/Orthogonality_(programming)
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P18, TS e YOS YERSUAL. 24 HElonie £ 84 RF o S0,

-(A::AbstractArray{T}, b::Date) where {T<:Date}

HAMES Y +27h

mm

Qlell 223t fMES Folgyd.

Jolst= Ag mote AYUT. thAl, IeHAQl HIME- A::AbstractArray, b)
o
=2

S5le det 22(0f] isimilar and -)2 FAEUEA]
A

o] FYol 7Hs5x| o2 uf B sHEst ol thal TH2 LAY E2S AlMshE Zlol &ULh HEo] i)
whyo] ol =|Qick sl A 120] YIEA S HEAU A E 4 girks 22 OJulshils 25U 250 £H02 & s

¥HT (band-aid)" S H T 4 vt

7122+ A28t "cascades"TIAE
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=2 .
=01, 122 THY 2SS A Folt igdS 4
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A2 ]2 g0l SYste Q148 st |l Folsioruct. oS
835t0] 1159| 7HAe) 2 Helshs o] QT ZbEck

function myfilter(A, kernel, ::Replicate)
Apadded = replicate_edges(A, size(kernel))
myfilter(Apadded, kernel) # O|A| "AH|"H A £HSIHAL.

end

oA

HEE fig2 AlFsh= tIMES 35 T Aok

rlo

myfilter(A, kernel) = myfilter(A, kernel, Replicate()) # replicate the edge by default

ol £ /b W2 AVt A4 AN 28 AAS WU

[o = Ny

o e tiziele tew 2ol 23 A% 28 YoIshe AYunh
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struct NoPad end # TjZIO| RStA| 7Lt 0|0 HBEUSES LIEHALICE.
myfilter(A, kernel) = myfilter(A, kernel, Replicate()) # 7|2 ZHAH =7
function myfilter(A, kernel, ::Replicate)

Apadded = replicate_edges(A, size(kernel))

myfilter(Apadded, kernel, NoPad()) # M=Z2 ZAA ZZAS LIEfHL|CE.

end

# O}

T

WY YE2 o7l ASLITH

function myfilter(A, kernel, ::NoPad)

# Cte

rlo

Sl AlLrel "HAH" FAYLICE.

end

NoPad= T} Z20] TYTt 22 Q1% X0l AZE7] B0l ClATHA] AZS 2 P25 ofolsil o

£ 7h5%o
SHSUCE E3, "public” myfilter QIEIHO]AS SHLICL HEYS BAI YO Aojslei ALGA: Nopad

o
R1A]
=]

2 Arthur C. Clarke, Profiles of the Future (1961): Clarke's Third Law.



Chapter 13

Constructors

Constructors ! are functions that create new objects — specifically, instances of Composite Types. In Julia, type
objects also serve as constructor functions: they create new instances of themselves when applied to an argument

tuple as a function. This much was already mentioned briefly when composite types were introduced. For example:

julia> struct Foo
bar
baz

end

julia> foo = Foo(1, 2)

Foo(1, 2)

julia> foo.bar

1

julia> foo.baz

2

For many types, forming new objects by binding their field values together is all that is ever needed to create instances.
However, in some cases more functionality is required when creating composite objects. Sometimes invariants must
be enforced, either by checking arguments or by transforming them. Recursive data structures, especially those
that may be self-referential, often cannot be constructed cleanly without first being created in an incomplete state
and then altered programmatically to be made whole, as a separate step from object creation. Sometimes, it's just
convenient to be able to construct objects with fewer or different types of parameters than they have fields. Julia's

system for object construction addresses all of these cases and more.

'Nomenclature: while the term "constructor” generally refers to the entire function which constructs objects of a type, it is common to abuse

187


https://en.wikipedia.org/wiki/Recursion_%28computer_science%29#Recursive_data_structures_.28structural_recursion.29
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13.1 Outer Constructor Methods

A constructor is just like any other function in Julia in that its overall behavior is defined by the combined behavior of
its methods. Accordingly, you can add functionality to a constructor by simply defining new methods. For example,
let's say you want to add a constructor method for Foo objects that takes only one argument and uses the given value

for both the bar and baz fields. This is simple:

julia> Foo(x) = Foo(x,x)

Foo

julia> Foo(1)

Foo(1, 1)

You could also add a zero-argument Foo constructor method that supplies default values for both of the bar and baz

fields:

julia> Foo() = Foo(0)

Foo

julia> Foo()

Foo(@, 0)

Here the zero-argument constructor method calls the single-argument constructor method, which in turn calls the au-
tomatically provided two-argument constructor method. For reasons that will become clear very shortly, additional
constructor methods declared as normal methods like this are called outer constructor methods. Outer construc-
tor methods can only ever create a new instance by calling another constructor method, such as the automatically

provided default ones.

13.2 Inner Constructor Methods

While outer constructor methods succeed in addressing the problem of providing additional convenience methods
for constructing objects, they fail to address the other two use cases mentioned in the introduction of this chapter:
enforcing invariants, and allowing construction of self-referential objects. For these problems, one needs inner

constructor methods. An inner constructor method is like an outer constructor method, except for two differences:

terminology slightly and refer to specific constructor methods as "constructors”. In such situations, it is generally clear from the context that the
term is used to mean "constructor method" rather than "constructor function”, especially as it is often used in the sense of singling out a particular
method of the constructor from all of the others.
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1. It is declared inside the block of a type declaration, rather than outside of it like normal methods.

2. It has access to a special locally existent function called new that creates objects of the block's type.

For example, suppose one wants to declare a type that holds a pair of real numbers, subject to the constraint that the

first number is not greater than the second one. One could declare it like this:

julia> struct OrderedPair
x::Real
y::Real
OrderedPair(x,y) = x > y ? error("out of order™) : new(x,y)

end

Now OrderedPair objects can only be constructed such that x <= y:

julia> OrderedPair(1, 2)

OrderedPair(1, 2)

julia> OrderedPair(2,1)
ERROR: out of order
Stacktrace:
[1] error at ./error.j1:33 [inlined]
[2] OrderedPair(::Int64, ::Int64) at ./none:4

[3] top-level scope

If the type were declared mutable, you could reach in and directly change the field values to violate this invariant. Of
course, messing around with an object's internals uninvited is bad practice. You (or someone else) can also provide
additional outer constructor methods at any later point, but once a type is declared, there is no way to add more inner
constructor methods. Since outer constructor methods can only create objects by calling other constructor methods,
ultimately, some inner constructor must be called to create an object. This guarantees that all objects of the declared
type must come into existence by a call to one of the inner constructor methods provided with the type, thereby giving

some degree of enforcement of a type's invariants.

If any inner constructor method is defined, no default constructor method is provided: it is presumed that you have
supplied yourself with all the inner constructors you need. The default constructor is equivalent to writing your own
inner constructor method that takes all of the object's fields as parameters (constrained to be of the correct type, if

the corresponding field has a type), and passes them to new, returning the resulting object:
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julia> struct Foo
bar
baz

Foo(bar,baz) = new(bar,baz)

end

This declaration has the same effect as the earlier definition of the Foo type without an explicit inner construc-
tor method. The following two types are equivalent — one with a default constructor, the other with an explicit

constructor:

julia> struct T1
x::Int64

end

julia> struct T2
x::Int64
T2(x) = new(x)

end

julia> T1(1)

T1(1)

julia> T2(1)

T2(1)

julia> T1(1.0)

T1(1)

julia> T2(1.0)

T2(1)

It is good practice to provide as few inner constructor methods as possible: only those taking all arguments explicitly
and enforcing essential error checking and transformation. Additional convenience constructor methods, supplying
default values or auxiliary transformations, should be provided as outer constructors that call the inner constructors

to do the heavy lifting. This separation is typically quite natural.
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13.3 Incomplete Initialization

The final problem which has still not been addressed is construction of self-referential objects, or more generally,
recursive data structures. Since the fundamental difficulty may not be immediately obvious, let us briefly explain it.

Consider the following recursive type declaration:

julia> mutable struct SelfReferential
obj::SelfReferential

end

This type may appear innocuous enough, until one considers how to construct an instance of it. If a is an instance

of SelfReferential, then a second instance can be created by the call:

julia> b = SelfReferential(a)

But how does one construct the first instance when no instance exists to provide as a valid value for its obj field?
The only solution is to allow creating an incompletely initialized instance of SelfReferential with an unassigned obj
field, and using that incomplete instance as a valid value for the obj field of another instance, such as, for example,

itself.

To allow for the creation of incompletely initialized objects, Julia allows the new function to be called with fewer
than the number of fields that the type has, returning an object with the unspecified fields uninitialized. The inner
constructor method can then use the incomplete object, finishing its initialization before returning it. Here, for
example, is another attempt at defining the SelfReferential type, this time using a zero-argument inner constructor

returning instances having obj fields pointing to themselves:

julia> mutable struct SelfReferential
obj::SelfReferential
SelfReferential() = (x = new(); x.obj = x)

end

We can verify that this constructor works and constructs objects that are, in fact, self-referential:

julia> x = SelfReferential();

julia> x === x

true
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julia> x === x.obj
true

julia> x === x.obj.obj
true

Although it is generally a good idea to return a fully initialized object from an inner constructor, it is possible to

return incompletely initialized objects:

julia> mutable struct Incomplete
data
Incomplete() = new()

end

julia> z = Incomplete();

While you are allowed to create objects with uninitialized fields, any access to an uninitialized reference is an

immediate error:

julia> z.data

ERROR: UndefRefError: access to undefined reference

This avoids the need to continually check for null values. However, not all object fields are references. Julia considers
some types to be "plain data", meaning all of their data is self-contained and does not reference other objects. The
plain data types consist of primitive types (e.g. Int) and immutable structs of other plain data types. The initial

contents of a plain data type is undefined:

julia> struct HasPlain
n::Int
HasPlain() = new()

end

julia> HasPlain()

HasPlain(438103441441)

Arrays of plain data types exhibit the same behavior.

You can pass incomplete objects to other functions from inner constructors to delegate their completion:
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julia> mutable struct Lazy
data
Lazy(v) = complete_me(new(), v)

end

As with incomplete objects returned from constructors, if complete_me or any of its callees try to access the data field

of the Lazy object before it has been initialized, an error will be thrown immediately.

13.4 Parametric Constructors

Parametric types add a few wrinkles to the constructor story. Recall from Parametric Types that, by default, instances
of parametric composite types can be constructed either with explicitly given type parameters or with type parameters

implied by the types of the arguments given to the constructor. Here are some examples:

julia> struct Point{T<:Real}
x::T
y::T

end

julia> Point(1,2) ## implicit T ##

Point{Int64}(1, 2)

julia> Point(1.0,2.5) ## implicit T ##

Point{Float64}(1.0, 2.5)

julia> Point(1,2.5) ## implicit T ##
ERROR: MethodError: no method matching Point(::Int64, ::Float64)
Closest candidates are:

Point(::T, ::T) where T<:Real at none:2

julia> Point{Int64}(1, 2) ## explicit T ##

Point{Int64}(1, 2)

julia> Point{Int64}(1.0,2.5) ## explicit T ##
ERROR: InexactError: Int64(2.5)
Stacktrace:

[...]

julia> Point{Float64}(1.0, 2.5) ## explicit T ##
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Point{Float64}(1.0, 2.5)

julia> Point{Float64}(1,2) ## explicit T ##

Point{Float64}(1.0, 2.0)

As you can see, for constructor calls with explicit type parameters, the arguments are converted to the implied field
types: Point{Int64}(1,2) works, but Point{Int64}(1.0,2.5) raises an InexactError when converting 2.5 to Int64.
When the type is implied by the arguments to the constructor call, as in Point(1,2), then the types of the arguments
must agree — otherwise the T cannot be determined — but any pair of real arguments with matching type may be

given to the generic Point constructor.

What's really going on here is that Point, Point{Float64} and Point{Int64} are all different constructor functions. In
fact, Point{T} is a distinct constructor function for each type T. Without any explicitly provided inner constructors,
the declaration of the composite type Point{T<:Real} automatically provides an inner constructor, Point{T}, for each
possible type T<:Real, that behaves just like non-parametric default inner constructors do. It also provides a single
general outer Point constructor that takes pairs of real arguments, which must be of the same type. This automatic

provision of constructors is equivalent to the following explicit declaration:

julia> struct Point{T<:Real}
x::T
y::T
Point{T}(x,y) where {T<:Real} = new(x,y)

end

julia> Point(x::T, y::T) where {T<:Real} = Point{T}(x,y);

Notice that each definition looks like the form of constructor call that it handles. The call Point{Int64}(1,2) will
invoke the definition Point{T}(x,y) inside the struct block. The outer constructor declaration, on the other hand,
defines a method for the general Point constructor which only applies to pairs of values of the same real type. This
declaration makes constructor calls without explicit type parameters, like Point(1,2) and Point(1.0,2.5), work. Since
the method declaration restricts the arguments to being of the same type, calls like Point(1,2.5), with arguments of

different types, result in "no method" errors.

Suppose we wanted to make the constructor call Point(1,2.5) work by "promoting” the integer value 1 to the floating-

point value 1.0. The simplest way to achieve this is to define the following additional outer constructor method:

julia> Point(x::Int64, y::Float64) = Point(convert(Float64,x),y);
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This method uses the convert function to explicitly convert x to Float64 and then delegates construction to the
general constructor for the case where both arguments are Float64. With this method definition what was previously

a MethodError now successfully creates a point of type Point{Float64}:

julia> Point(1,2.5)

Point{Float64}(1.0, 2.5)

julia> typeof(ans)

Point{Float64}

However, other similar calls still don't work:

julia> Point(1.5,2)
ERROR: MethodError: no method matching Point(::Float64, ::Int64)
Closest candidates are:

Point(::T, !Matched::T) where T<:Real at none:1

For a more general way to make all such calls work sensibly, see Conversion and Promotion. At the risk of spoiling
the suspense, we can reveal here that all it takes is the following outer method definition to make all calls to the

general Point constructor work as one would expect:

julia> Point(x::Real, y::Real) = Point(promote(x,y)...);

The promote function converts all its arguments to a common type — in this case Float64. With this method definition,
the Point constructor promotes its arguments the same way that numeric operators like + do, and works for all kinds

of real numbers:

julia> Point(1.5,2)

Point{Float64}(1.5, 2.0)

julia> Point(1,1//2)

Point{Rational{Int64}}(1//1, 1//2)

julia> Point(1.0,1//2)

Point{Float64}(1.0, 0.5)

Thus, while the implicit type parameter constructors provided by default in Julia are fairly strict, it is possible to
make them behave in a more relaxed but sensible manner quite easily. Moreover, since constructors can leverage all
of the power of the type system, methods, and multiple dispatch, defining sophisticated behavior is typically quite

simple.
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Perhaps the best way to tie all these pieces together is to present a real world example of a parametric composite type

and its constructor methods. To that end, we implement our own rational number type OurRational, similar to Julia's

built-in Rational type, defined in rational.jl:

num::T

den::T

end

g = gcd(den, num)
num = div(num, g)
den = div(den, g)
new(num, den)

end

end

OurRational

OurRational

OurRational

@ (generic function with 1 method)

julia> o(x::OurRational, y::Integer)

o (generic function with 2 methods)

julia> o(x::Integer, y::OurRational)

o (generic function with 3 methods)

@ (generic function with 4 methods)

if num == 0 & den == 0

julia> struct OurRational{T<:Integer} <: Real

function OurRational{T}(num::T, den::T) where T<:Integer

error("invalid rational: 0//0")

julia> OurRational(n::T, d::T) where {T<:Integer} = OurRational{T}(n,d)

julia> OurRational(n::Integer, d::Integer) = OurRational(promote(n,d)...)

julia> OurRational(n::Integer) = OurRational(n,one(n))

julia> e(n::Integer, d::Integer) = OurRational(n,d)

x.num @ (x.denxy)

(x*y.den) @ y.num

julia> o(x::Complex, y::Real) = complex(real(x) e y, imag(x) @ y)


https://github.com/JuliaLang/julia/blob/master/base/rational.jl
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julia> o(x::Real, y::Complex) = (x*y') @ real(y*y')

o (generic function with 5 methods)

julia> function e(x::Complex, y::Complex)
Xy = Xxy'
yy = real(y+y")
complex(real(xy) o yy, imag(xy) o yy)

end

@ (generic function with 6 methods)

The first line — struct OurRational{T<:Integer} <: Real — declares that OurRational takes one type parameter of
an integer type, and is itself a real type. The field declarations num::T and den::T indicate that the data held in a
OurRational{T} object are a pair of integers of type T, one representing the rational value's numerator and the other

representing its denominator.

Now things get interesting. OurRational has a single inner constructor method which checks that both of num and den
aren't zero and ensures that every rational is constructed in "lowest terms" with a non-negative denominator. This is
accomplished by dividing the given numerator and denominator values by their greatest common divisor, computed
using the ged function. Since gcd returns the greatest common divisor of its arguments with sign matching the first
argument (den here), after this division the new value of den is guaranteed to be non-negative. Because this is the
only inner constructor for OurRational, we can be certain that OurRational objects are always constructed in this

normalized form.

OurRational also provides several outer constructor methods for convenience. The first is the "standard” general
constructor that infers the type parameter T from the type of the numerator and denominator when they have the
same type. The second applies when the given numerator and denominator values have different types: it promotes
them to a common type and then delegates construction to the outer constructor for arguments of matching type.

The third outer constructor turns integer values into rationals by supplying a value of 1 as the denominator.

Following the outer constructor definitions, we defined a number of methods for the @ operator, which provides a
syntax for writing rationals (e.g. 1 @ 2). Julia's Rational type uses the // operator for this purpose. Before these
definitions, @ is a completely undefined operator with only syntax and no meaning. Afterwards, it behaves just as
described in 72| — its entire behavior is defined in these few lines. The first and most basic definition just makes
a @ b construct a OurRational by applying the OurRational constructor to a and b when they are integers. When
one of the operands of @ is already a rational number, we construct a new rational for the resulting ratio slightly
differently; this behavior is actually identical to division of a rational with an integer. Finally, applying @ to complex
integral values creates an instance of Complex{OurRational} — a complex number whose real and imaginary parts are

rationals:
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julia> z = (1 + 2im) e (1 - 2im);

julia> typeof(z)

Complex{OurRational{Int64}}

julia> typeof(z) <: Complex{OurRational}

false

Thus, although the @ operator usually returns an instance of OurRational, if either of its arguments are complex
integers, it will return an instance of Complex{OurRational} instead. The interested reader should consider perusing

the rest of rational.jl: it is short, self-contained, and implements an entire basic Julia type.

13.6 Outer-only constructors

As we have seen, a typical parametric type has inner constructors that are called when type parameters are known;
e.g. they apply to Point{Int} but not to Point. Optionally, outer constructors that determine type parameters auto-
matically can be added, for example constructing a Point{Int} from the call Point(1,2). Outer constructors call inner
constructors to actually make instances. However, in some cases one would rather not provide inner constructors, so

that specific type parameters cannot be requested manually.

For example, say we define a type that stores a vector along with an accurate representation of its sum:

julia> struct SummedArray{T<:Number,S<:Number}
data: :Vector{T}
sum: :S

end

julia> SummedArray(Int32[1; 2; 3], Int32(6))

SummedArray{Int32,Int32}(Int32[1, 2, 3], 6)

The problem is that we want S to be a larger type than T, so that we can sum many elements with less information
loss. For example, when T is Int32, we would like S to be Int64. Therefore we want to avoid an interface that allows
the user to construct instances of the type SummedArray{Int32,Int32}. One way to do this is to provide a constructor

only for SummedArray, but inside the struct definition block to suppress generation of default constructors:

julia> struct SummedArray{T<:Number,S<:Number}
data: :Vector{T}
sum: :S

function SummedArray(a::Vector{T}) where T


https://github.com/JuliaLang/julia/blob/master/base/rational.jl
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S = widen(T)
new{T,S}(a, sum(S, a))
end

end

julia> SummedArray(Int32[1; 2; 3], Int32(6))
ERROR: MethodError: no method matching SummedArray(::Array{Int32,1}, ::Int32)

Closest candidates are:

SummedArray(::Array{T,1}) where T at none:5

This constructor will be invoked by the syntax SummedArray(a). The syntax new{T,S} allows specifying parameters
for the type to be constructed, i.e. this call will return a SummedArray{T,S}. new{T,S} can be used in any constructor
definition, but for convenience the parameters to new{} are automatically derived from the type being constructed

when possible.






Chapter 14

Conversion and Promotion

Julia has a system for promoting arguments of mathematical operators to a common type, which has been mentioned
in various other sections, including H£:9} 25 A4 4 Ats HAb 712 Sk Types, and Methods. In this section,
we explain how this promotion system works, as well as how to extend it to new types and apply it to functions
besides built-in mathematical operators. Traditionally, programming languages fall into two camps with respect to

promotion of arithmetic arguments:

+ Automatic promotion for built-in arithmetic types and operators. In most languages, built-in numeric types,
when used as operands to arithmetic operators with infix syntax, such as +, -, *, and /, are automatically
promoted to a common type to produce the expected results. C, Java, Perl, and Python, to name a few, all
correctly compute the sum 1 + 1.5 as the floating-point value 2.5, even though one of the operands to +
is an integer. These systems are convenient and designed carefully enough that they are generally all-but-
invisible to the programmer: hardly anyone consciously thinks of this promotion taking place when writing
such an expression, but compilers and interpreters must perform conversion before addition since integers and
floating-point values cannot be added as-is. Complex rules for such automatic conversions are thus inevitably

part of specifications and implementations for such languages.

+ No automatic promotion. This camp includes Ada and ML — very "strict" statically typed languages. In these
languages, every conversion must be explicitly specified by the programmer. Thus, the example expression
1 + 1.5 would be a compilation error in both Ada and ML. Instead one must write real(1) + 1.5, explicitly
converting the integer 1 to a floating-point value before performing addition. Explicit conversion everywhere
is so inconvenient, however, that even Ada has some degree of automatic conversion: integer literals are
promoted to the expected integer type automatically, and floating-point literals are similarly promoted to

appropriate floating-point types.

In a sense, Julia falls into the "no automatic promotion" category: mathematical operators are just functions with

special syntax, and the arguments of functions are never automatically converted. However, one may observe that

201
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applying mathematical operations to a wide variety of mixed argument types is just an extreme case of polymorphic
multiple dispatch — something which Julia's dispatch and type systems are particularly well-suited to handle. "Au-
tomatic" promotion of mathematical operands simply emerges as a special application: Julia comes with pre-defined
catch-all dispatch rules for mathematical operators, invoked when no specific implementation exists for some com-
bination of operand types. These catch-all rules first promote all operands to a common type using user-definable
promotion rules, and then invoke a specialized implementation of the operator in question for the resulting values,
now of the same type. User-defined types can easily participate in this promotion system by defining methods for
conversion to and from other types, and providing a handful of promotion rules defining what types they should

promote to when mixed with other types.

14.1 Conversion

The standard way to obtain a value of a certain type T is to call the type's constructor, T(x). However, there are cases
where it's convenient to convert a value from one type to another without the programmer asking for it explicitly.
One example is assigning a value into an array: if A is a Vector{Float64}, the expression A[1] = 2 should work by
automatically converting the 2 from Int to Float64, and storing the result in the array. This is done via the convert

function.

The convert function generally takes two arguments: the first is a type object and the second is a value to convert
to that type. The returned value is the value converted to an instance of given type. The simplest way to understand

this function is to see it in action:

julia> x = 12

12

julia> typeof(x)

Int64

julia> convert(UInt8, x)

0x0c

julia> typeof(ans)

UInt8

julia> convert(AbstractFloat, x)

12.0

julia> typeof(ans)

Float64
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julia> a = Any[1 2 3; 4 5 6]
2x3 Array{Any,2}:
1 2 3

4 5 6

julia> convert(Array{Float64}, a)
2x3 Array{Float64,2}:

1.0 2.0 3.0

4.0 5.0 6.0

Conversion isn't always possible, in which case a no method error is thrown indicating that convert doesn't know

how to perform the requested conversion:

julia> convert(AbstractFloat, "foo")
ERROR: MethodError: Cannot “convert™ an object of type String to an object of type AbstractFloat
[...]

Some languages consider parsing strings as numbers or formatting numbers as strings to be conversions (many
dynamic languages will even perform conversion for you automatically), however Julia does not: even though some
strings can be parsed as numbers, most strings are not valid representations of numbers, and only a very limited
subset of them are. Therefore in Julia the dedicated parse function must be used to perform this operation, making

it more explicit.

When is convert called?

The following language constructs call convert:

« Assigning to an array converts to the array's element type.

» Assigning to a field of an object converts to the declared type of the field.

- Constructing an object with new converts to the object's declared field types.

+ Assigning to a variable with a declared type (e.g. local x::T) converts to that type.

« A function with a declared return type converts its return value to that type.

« Passing a value to ccall converts it to the corresponding argument type.
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Conversion vs. Construction

Note that the behavior of convert(T, x) appears to be nearly identical to T(x). Indeed, it usually is. However, there is
a key semantic difference: since convert can be called implicitly, its methods are restricted to cases that are considered
"safe" or "unsurprising". convert will only convert between types that represent the same basic kind of thing (e.g.
different representations of numbers, or different string encodings). It is also usually lossless; converting a value to

a different type and back again should result in the exact same value.

There are four general kinds of cases where constructors differ from convert:

Constructors for types unrelated to their arguments

Some constructors don't implement the concept of "conversion". For example, Timer(2) creates a 2-second timer,

which is not really a "conversion" from an integer to a timer.

Mutable collections

convert(T, x) is expected to return the original x if x is already of type T. In contrast, if T is a mutable collection

type then T(x) should always make a new collection (copying elements from x).

Wrapper types

For some types which "wrap" other values, the constructor may wrap its argument inside a new object even if it is
already of the requested type. For example Some(x) wraps x to indicate that a value is present (in a context where
the result might be a Some or nothing). However, x itself might be the object Some(y), in which case the result is
Some(Some(y)), with two levels of wrapping. convert(Some, x), on the other hand, would just return x since it is

already a Some.

Constructors that don't return instances of their own type

In very rare cases it might make sense for the constructor T(x) to return an object not of type T. This could happen
if a wrapper type is its own inverse (e.g. Flip(Flip(x)) === Xx), or to support an old calling syntax for backwards

compatibility when a library is restructured. But convert(T, x) should always return a value of type T.

Defining New Conversions

When defining a new type, initially all ways of creating it should be defined as constructors. If it becomes clear
that implicit conversion would be useful, and that some constructors meet the above "safety" criteria, then convert
methods can be added. These methods are typically quite simple, as they only need to call the appropriate constructor.

Such a definition might look like this:

convert(::Type{MyType}, x) = MyType(x)



14.2. PROMOTION 205

The type of the first argument of this method is a singleton type, Type{MyType}, the only instance of which is MyType.
Thus, this method is only invoked when the first argument is the type value MyType. Notice the syntax used for the
first argument: the argument name is omitted prior to the :: symbol, and only the type is given. This is the syntax
in Julia for a function argument whose type is specified but whose value does not need to be referenced by name. In

this example, since the type is a singleton, we already know its value without referring to an argument name.

All instances of some abstract types are by default considered "sufficiently similar" that a universal convert definition
is provided in Julia Base. For example, this definition states that it's valid to convert any Number type to any other

by calling a 1-argument constructor:

convert(::Type{T}, x::Number) where {T<:Number} = T(x)

This means that new Number types only need to define constructors, since this definition will handle convert for them.

An identity conversion is also provided to handle the case where the argument is already of the requested type:

convert(::Type{T}, x::T) where {T<:Number} = x

Similar definitions exist for AbstractString, AbstractArray, and AbstractDict.

14.2 Promotion

Promotion refers to converting values of mixed types to a single common type. Although it is not strictly necessary,
it is generally implied that the common type to which the values are converted can faithfully represent all of the
original values. In this sense, the term "promotion" is appropriate since the values are converted to a "greater" type —
i.e. one which can represent all of the input values in a single common type. It is important, however, not to confuse
this with object-oriented (structural) super-typing, or Julia's notion of abstract super-types: promotion has nothing
to do with the type hierarchy, and everything to do with converting between alternate representations. For instance,

although every Int32 value can also be represented as a Float64 value, Int32 is not a subtype of Float64.

Promotion to a common "greater” type is performed in Julia by the promote function, which takes any number of
arguments, and returns a tuple of the same number of values, converted to a common type, or throws an exception if

promotion is not possible. The most common use case for promotion is to convert numeric arguments to a common

type:

julia> promote(1, 2.5)

(1.9, 2.5)

julia> promote(l, 2.5, 3)
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(1.0, 2.5, 3.0)

julia> promote(2, 3//4)
(2/71, 3//4)

julia> promote(1, 2.5, 3, 3//4)

(1.0, 2.5, 3.0, 0.75)

julia> promote(1.5, im)

(1.5 + 0.0im, 0.0 + 1.0im)

julia> promote(l + 2im, 3//4)

(1//1 + 2//1xim, 3//4 + @//1%im)

Floating-point values are promoted to the largest of the floating-point argument types. Integer values are promoted
to the larger of either the native machine word size or the largest integer argument type. Mixtures of integers and
floating-point values are promoted to a floating-point type big enough to hold all the values. Integers mixed with
rationals are promoted to rationals. Rationals mixed with floats are promoted to floats. Complex values mixed with

real values are promoted to the appropriate kind of complex value.

That is really all there is to using promotions. The rest is just a matter of clever application, the most typical "clever"
application being the definition of catch-all methods for numeric operations like the arithmetic operators +, -, * and

/. Here are some of the catch-all method definitions given in promotion.jl:

+(x: :Number, y::Number) = +(promote(x,y)...
~(x: :Number, y::Number) = -(promote(x,y)...

#(x: :Number, y::Number) = *(promote(x,y)...

~ ~ ~ ~

/(x::Number, y::Number) = /(promote(x,y)...

These method definitions say that in the absence of more specific rules for adding, subtracting, multiplying and
dividing pairs of numeric values, promote the values to a common type and then try again. That's all there is to it:
nowhere else does one ever need to worry about promotion to a common numeric type for arithmetic operations — it
just happens automatically. There are definitions of catch-all promotion methods for a number of other arithmetic
and mathematical functions in promotion.j1, but beyond that, there are hardly any calls to promote required in Julia
Base. The most common usages of promote occur in outer constructors methods, provided for convenience, to allow
constructor calls with mixed types to delegate to an inner type with fields promoted to an appropriate common type.

For example, recall that rational.jl provides the following outer constructor method:

Rational(n::Integer, d::Integer) = Rational(promote(n,d)...)


https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
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This allows calls like the following to work:

julia> Rational(Int8(15),Int32(-5))

-3//1

julia> typeof(ans)

Rational{Int32}

For most user-defined types, it is better practice to require programmers to supply the expected types to constructor
functions explicitly, but sometimes, especially for numeric problems, it can be convenient to do promotion automat-

ically.

Defining Promotion Rules

Although one could, in principle, define methods for the promote function directly, this would require many redundant
definitions for all possible permutations of argument types. Instead, the behavior of promote is defined in terms of
an auxiliary function called promote_rule, which one can provide methods for. The promote_rule function takes a
pair of type objects and returns another type object, such that instances of the argument types will be promoted to

the returned type. Thus, by defining the rule:

promote_rule(::Type{Float64}, ::Type{Float32}) = Float64

one declares that when 64-bit and 32-bit floating-point values are promoted together, they should be promoted to
64-bit floating-point. The promotion type does not need to be one of the argument types, however; the following

promotion rules both occur in Julia Base:

promote_rule(::Type{BigInt}, ::Type{Float64}) = BigFloat

promote_rule(::Type{BigInt}, ::Type{Int8}) = BigInt

In the latter case, the result type is BigInt since BigInt is the only type large enough to hold integers for arbitrary-
precision integer arithmetic. Also note that one does not need to define both promote_rule(::Type{A}, ::Type{B})
and promote_rule(::Type{B}, ::Type{A}) —the symmetry is implied by the way promote_rule is used in the promotion

process.

The promote_rule function is used as a building block to define a second function called promote_type, which, given
any number of type objects, returns the common type to which those values, as arguments to promote should be
promoted. Thus, if one wants to know, in absence of actual values, what type a collection of values of certain types

would promote to, one can use promote_type:
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julia> promote_type(Int8, Int64)

Int64

Internally, promote_type is used inside of promote to determine what type argument values should be converted to for
promotion. It can, however, be useful in its own right. The curious reader can read the code in promotion.jl, which

defines the complete promotion mechanism in about 35 lines.

Case Study: Rational Promotions

Finally, we finish off our ongoing case study of Julia's rational number type, which makes relatively sophisticated

use of the promotion mechanism with the following promotion rules:

promote_rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:Integer} = Rational{promote_type(T,S)}
promote_rule(::Type{Rational{T}}, ::Type{Rational{S}}) where {T<:Integer,S<:Integer} = Rational{promote_type(T,S)}

promote_rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:AbstractFloat} = promote_type(T,S)

The first rule says that promoting a rational number with any other integer type promotes to a rational type whose
numerator/denominator type is the result of promotion of its numerator/denominator type with the other integer
type. The second rule applies the same logic to two different types of rational numbers, resulting in a rational of
the promotion of their respective numerator/denominator types. The third and final rule dictates that promoting a

rational with a float results in the same type as promoting the numerator/denominator type with the float.

This small handful of promotion rules, together with the type's constructors and the default convert method for
numbers, are sufficient to make rational numbers interoperate completely naturally with all of Julia's other numeric
types — integers, floating-point numbers, and complex numbers. By providing appropriate conversion methods and
promotion rules in the same manner, any user-defined numeric type can interoperate just as naturally with Julia's

predefined numerics.


https://github.com/JuliaLang/julia/blob/master/base/promotion.jl

Chapter 15

Interfaces

A lot of the power and extensibility in Julia comes from a collection of informal interfaces. By extending a few

specific methods to work for a custom type, objects of that type not only receive those functionalities, but they are

also able to be used in other methods that are written to generically build upon those behaviors.

15.1 [Iteration

Required methods

Brief description

iterate(iter)

Returns either a tuple of the first item and initial state or nothing if
empty

iterate(iter, state)

Returns either a tuple of the next item and next state or nothing if
no items remain

Important optional Default Brief description

methods definition

IteratorSize(IterType)| HasLength() One of HasLength(), HasShape{N}(), IsInfinite(), or SizeUnknown()
as appropriate

IteratorEltype(IterType)HasEltype() Either EltypeUnknown() or HasEltype() as appropriate

eltype(IterType) Any The type of the first entry of the tuple returned by iterate()

length(iter) (undefined) The number of items, if known

size(iter, [dim]) (undefined) The number of items in each dimension, if known

Sequential iteration is implemented by the iterate function. Instead of mutating objects as they are iterated over,

Julia iterators may keep track of the iteration state externally from the object. The return value from iterate is always

either a tuple of a value and a state, or nothing if no elements remain. The state object will be passed back to the

iterate function on the next iteration and is generally considered an implementation detail private to the iterable

object.

209
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Value returned by IteratorSize(IterType) | Required Methods

HasLength() length(iter)

HasShape{N}() length(iter) and size(iter, [dim])
IsInfinite() (none)

SizeUnknown() (none)

Value returned by IteratorEltype(IterType) | Required Methods

HasEltype() eltype(IterType)

EltypeUnknown() (none)

Any object that defines this function is iterable and can be used in the many functions that rely upon iteration. It

can also be used directly in a for loop since the syntax:

for i in iter # or "for i = iter”
# body

end

is translated into:

next = iterate(iter)
while next !== nothing
(i, state) = next
# body
next = iterate(iter, state)

end

A simple example is an iterable sequence of square numbers with a defined length:

julia> struct Squares
count::Int

end

julia> Base.iterate(S::Squares, state=1) = state > S.count ? nothing : (statexstate, state+l)

With only iterate definition, the Squares type is already pretty powerful. We can iterate over all the elements:
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julia> for i in Squares(7)
println(i)

end

16
25

36

49

We can use many of the builtin methods that work with iterables, like in, or mean and std from the Statistics standard

library module:

julia> 25 in Squares(10)

true

julia> using Statistics

julia> mean(Squares(100))

3383.5

julia> std(Squares(100))

3024.355854282583

There are a few more methods we can extend to give Julia more information about this iterable collection. We
know that the elements in a Squares sequence will always be Int. By extending the eltype method, we can give that
information to Julia and help it make more specialized code in the more complicated methods. We also know the

number of elements in our sequence, so we can extend length, too:

julia> Base.eltype(::Type{Squares}) = Int # Note that this is defined for the type

julia> Base.length(S::Squares) = S.count

Now, when we ask Julia to collect all the elements into an array it can preallocate a Vector{Int} of the right size

instead of blindly push!ing each element into a Vector{Any}:

julia> collect(Squares(4))

4-element Array{Int64,1}:
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16

While we can rely upon generic implementations, we can also extend specific methods where we know there is a
simpler algorithm. For example, there's a formula to compute the sum of squares, so we can override the generic

iterative version with a more performant solution:

julia> Base.sum(S::Squares) = (n = S.count; return n#(n+1)*(2n+1)<6)

julia> sum(Squares(1803))

1955361914

This is a very common pattern throughout Julia Base: a small set of required methods define an informal interface
that enable many fancier behaviors. In some cases, types will want to additionally specialize those extra behaviors

when they know a more efficient algorithm can be used in their specific case.

[t is also often useful to allow iteration over a collection in reverse order by iterating over Iterators.reverse(iterator).
To actually support reverse-order iteration, however, an iterator type T needs to implement iterate for Iterators.Reverse{T}.
(Given r::Iterators.Reverse{T}, the underling iterator of type Tis r.itr.) In our Squares example, we would imple-

ment Iterators.Reverse{Squares} methods:

julia> Base.iterate(rS::Iterators.Reverse{Squares}, state=rS.itr.count) = state < 1 ? nothing : (state*state,

<s state-1)

julia> collect(Iterators.reverse(Squares(4)))
4-element Array{Int64,1}:
16
9
4

1

15.2 Indexing

For the Squares iterable above, we can easily compute the ith element of the sequence by squaring it. We can expose

this as an indexing expression S[i]. To opt into this behavior, Squares simply needs to define getindex:
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Methods to implement | Brief description

getindex(X, i) X[i], indexed element access
setindex! (X, v, i) X[i] = v, indexed assignment
firstindex(X) The first index

lastindex(X) The last index, used in X[end]

julia> function Base.getindex(S::Squares, i::Int)
1 <=1 <= S.count || throw(BoundsError(S, i))
return ixi

end

julia> Squares(100)[23]

529

Additionally, to support the syntax S[end], we must define lastindex to specify the last valid index. It is recommended

to also define firstindex to specify the first valid index:

julia> Base.firstindex(S::Squares) = 1

julia> Base.lastindex(S::Squares) = length(S)

julia> Squares(23)[end]

529

Note, though, that the above only defines getindex with one integer index. Indexing with anything other than an
Int will throw a MethodError saying that there was no matching method. In order to support indexing with ranges or

vectors of Ints, separate methods must be written:

julia> Base.getindex(S::Squares, i::Number) = S[convert(Int, i)]

julia> Base.getindex(S::Squares, I) = [S[i] for i in I]

julia> Squares(10)[[3,4.,5]1]
3-element Array{Int64,1}:

9

16

25
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While this is starting to support more of the indexing operations supported by some of the builtin types, there's still
quite a number of behaviors missing. This Squares sequence is starting to look more and more like a vector as we've
added behaviors to it. Instead of defining all these behaviors ourselves, we can officially define it as a subtype of an

AbstractArray.

15.3 Abstract Arrays

If a type is defined as a subtype of AbstractArray, it inherits a very large set of rich behaviors including iteration
and multidimensional indexing built on top of single-element access. See the arrays manual page and the Julia Base

section for more supported methods.

A key part in defining an AbstractArray subtype is IndexStyle. Since indexing is such an important part of an array
and often occurs in hot loops, it's important to make both indexing and indexed assignment as efficient as possible.
Array data structures are typically defined in one of two ways: either it most efficiently accesses its elements using
just one index (linear indexing) or it intrinsically accesses the elements with indices specified for every dimension.
These two modalities are identified by Julia as IndexLinear() and IndexCartesian(). Converting a linear index to
multiple indexing subscripts is typically very expensive, so this provides a traits-based mechanism to enable efficient

generic code for all array types.

This distinction determines which scalar indexing methods the type must define. IndexLinear() arrays are simple:
just define getindex(A::ArrayType, i::Int). When the array is subsequently indexed with a multidimensional set
of indices, the fallback getindex(A::AbstractArray, I...)() efficiently converts the indices into one linear index
and then calls the above method. IndexCartesian() arrays, on the other hand, require methods to be defined for each
supported dimensionality with ndims(A) Int indices. For example, SparseMatrixCSC from the SparseArrays standard
library module, only supports two dimensions, so it just defines getindex(A::SparseMatrixCSC, i::Int, j::Int).

The same holds for setindex!.

Returning to the sequence of squares from above, we could instead define it as a subtype of an AbstractArray{Int,

1}

julia> struct SquaresVector <: AbstractArray{Int, 1}
count::Int
end
julia> Base.size(S::SquaresVector) = (S.count,)

julia> Base.IndexStyle(::Type{<:SquaresVector}) = IndexLinear()

julia> Base.getindex(S::SquaresVector, i::Int) = ixi
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Note that it's very important to specify the two parameters of the AbstractArray; the first defines the eltype, and the
second defines the ndims. That supertype and those three methods are all it takes for SquaresVector to be an iterable,

indexable, and completely functional array:

julia> s = SquaresVector(4)
4-element SquaresVector:

1

4

9

16

julia> s[s .> 8]
2-element Array{Int64,1}:
9
16

julia> s + s

4-element Array{Int64,1}:
2
8
18

32

julia> sin.(s)

4-element Array{Float64,1}:
0.8414709848078965
-0.7568024953079282
0.4121184852417566

-0.2879033166650653

As a more complicated example, let's define our own toy N-dimensional sparse-like array type built on top of Dict:

julia> struct SparseArray{T,N} <: AbstractArray{T,N}
data::Dict{NTuple{N,Int}, T}
dims: :NTuple{N,Int}

end

julia> SparseArray(::Type{T}, dims::Int...) where {T} = SparseArray(T, dims);
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julia> SparseArray(::Type{T}, dims::NTuple{N,Int}) where {T,N} = SparseArray{T,N}(Dict{NTuple{N,Int}, T}(), dims);

julia> Base.size(A::SparseArray) = A.dims

julia> Base.similar(A::SparseArray, ::Type{T}, dims::Dims) where {T} = SparseArray(T, dims)

julia> Base.getindex(A::SparseArray{T,N}, I::Vararg{Int,N}) where {T,N} = get(A.data, I, zero(T))

julia> Base.setindex!(A::SparseArray{T,N}, v, I::Vararg{Int,N}) where {T,N} = (A.data[I] = v)

Notice that this is an IndexCartesian array, so we must manually define getindex and setindex! at the dimensionality

of the array. Unlike the SquaresVector, we are able to define setindex!, and so we can mutate the array:

julia> A = SparseArray(Float64, 3, 3)
3x3 SparseArray{Float64,2}:

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

julia> filll(A, 2)

3x3 SparseArray{Float64,2}:
2.0 2.0 2.0
2.0 2.0 2.0

2.0 2.0 2.0

julia> A[:] = 1:1length(A); A
3x3 SparseArray{Float64,2}:
1.0 4.0 7.0

2.0 5.0 8.0

3.0 6.0 9.0

The result of indexing an AbstractArray can itself be an array (for instance when indexing by an AbstractRange).
The AbstractArray fallback methods use similar to allocate an Array of the appropriate size and element type, which
is filled in using the basic indexing method described above. However, when implementing an array wrapper you

often want the result to be wrapped as well:

julia> A[1:2,:]

2x3 SparseArray{Float64,2}:
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1.0 4.0 7.0

2.0 5.0 8.0

In this example it is accomplished by defining Base.similar{T}(A::SparseArray, ::Type{T}, dims::Dims) to create
the appropriate wrapped array. (Note that while similar supports 1- and 2-argument forms, in most case you only
need to specialize the 3-argument form.) For this to work it's important that SparseArray is mutable (supports

setindex!). Defining similar, getindex and setindex! for SparseArray also makes it possible to copy the array:

julia> copy(A)

3x3 SparseArray{Float64,2}:
1.0 4.0 7.0
2.0 5.0 8.0

3.0 6.0 9.0

In addition to all the iterable and indexable methods from above, these types can also interact with each other and

use most of the methods defined in Julia Base for AbstractArrays:

julia> A[SquaresVector(3)]
3-element SparseArray{Float64,1}:
1.0

4.0

9.0

julia> sum(A)

45.0

If you are defining an array type that allows non-traditional indexing (indices that start at something other than
1), you should specialize axes. You should also specialize similar so that the dims argument (ordinarily a Dims size-
tuple) can accept AbstractUnitRange objects, perhaps range-types Ind of your own design. For more information, see

Arrays with custom indices.

15.4 Strided Arrays

A strided array is a subtype of AbstractArray whose entries are stored in memory with fixed strides. Provided the
element type of the array is compatible with BLAS, a strided array can utilize BLAS and LAPACK routines for more
efficient linear algebra routines. A typical example of a user-defined strided array is one that wraps a standard Array

with additional structure.
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Warning: do not implement these methods if the underlying storage is not actually strided, as it may lead to incorrect

results or segmentation faults.

Here are some examples to demonstrate which type of arrays are strided and which are not:

1:5 # not strided (there is no storage associated with this array.)
Vector(1:5) # is strided with strides (1,)
A=1[15;26; 37; 48] # is strided with strides (1,4)

V = view(A, 1:2, :) # is strided with strides (1,4)

V = view(A, 1:2:3, 1:2) # is strided with strides (2,4)

V = view(A, [1,2,4], :) # is not strided, as the spacing between rows is not fixed.

15.5 Customizing broadcasting

Broadcasting is triggered by an explicit call to broadcast or broadcast!, or implicitly by "dot" operations like A .+ b
or f.(x, y). Any object that has axes and supports indexing can participate as an argument in broadcasting, and by

default the result is stored in an Array. This basic framework is extensible in three major ways:

+ Ensuring that all arguments support broadcast
+ Selecting an appropriate output array for the given set of arguments

+ Selecting an efficient implementation for the given set of arguments

Not all types support axes and indexing, but many are convenient to allow in broadcast. The Base.broadcastable
function is called on each argument to broadcast, allowing it to return something different that supports axes and
indexing. By default, this is the identity function for all AbstractArrays and Numbers — they already support axes and
indexing. For a handful of other types (including but not limited to types themselves, functions, special singletons
like missing and nothing, and dates), Base.broadcastable returns the argument wrapped in a Ref to act as a O-
dimensional "scalar" for the purposes of broadcasting. Custom types can similarly specialize Base.broadcastable to
define their shape, but they should follow the convention that collect(Base.broadcastable(x)) == collect(x). A
notable exception is AbstractString; strings are special-cased to behave as scalars for the purposes of broadcast even

though they are iterable collections of their characters (see Strings for more).

The next two steps (selecting the output array and implementation) are dependent upon determining a single answer
for a given set of arguments. Broadcast must take all the varied types of its arguments and collapse them down to just
one output array and one implementation. Broadcast calls this single answer a "style." Every broadcastable object
each has its own preferred style, and a promotion-like system is used to combine these styles into a single answer —

the "destination style".
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Broadcast Styles

Base.BroadcastStyle is the abstract type from which all broadcast styles are derived. When used as a function it has
two possible forms, unary (single-argument) and binary. The unary variant states that you intend to implement spe-

cific broadcasting behavior and/or output type, and do not wish to rely on the default fallback Broadcast.DefaultArrayStyle.

To override these defaults, you can define a custom BroadcastStyle for your object:

struct MyStyle <: Broadcast.BroadcastStyle end

Base.BroadcastStyle(: :Type{<:MyType}) = MyStyle()

In some cases it might be convenient not to have to define MyStyle, in which case you can leverage one of the general

broadcast wrappers:

+ Base.BroadcastStyle(::Type{<:MyType}) = Broadcast.Style{MyType}() can be used for arbitrary types.

+ Base.BroadcastStyle(::Type{<:MyType}) = Broadcast.ArrayStyle{MyType}() is preferred if MyType is an AbstractArray.

« ForAbstractArrays that only support a certain dimensionality, create a subtype of Broadcast.AbstractArrayStyle{N}

(see below).

When your broadcast operation involves several arguments, individual argument styles get combined to determine

a single DestStyle that controls the type of the output container. For more details, see below.

Selecting an appropriate output array

The broadcast style is computed for every broadcasting operation to allow for dispatch and specialization. The actual

allocation of the result array is handled by similar, using the Broadcasted object as its first argument.

Base.similar(bc: :Broadcasted{DestStyle}, ::Type{ElType})

The fallback definition is

similar(bc: :Broadcasted{DefaultArrayStyle{N}}, ::Type{E1Type}) where {N,ElType} =

similar(Array{ElType}, axes(bc))

However, if needed you can specialize on any or all of these arguments. The final argument bc is a lazy representation
of a (potentially fused) broadcast operation, a Broadcasted object. For these purposes, the most important fields of
the wrapper are f and args, describing the function and argument list, respectively. Note that the argument list can

— and often does — include other nested Broadcasted wrappers.

For a complete example, let's say you have created a type, ArrayAndChar, that stores an array and a single character:
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struct ArrayAndChar{T,N} <: AbstractArray{T,N}
data: :Array{T,N}
char::Char
end
Base.size(A: :ArrayAndChar) = size(A.data)
Base.getindex(A: :ArrayAndChar{T,N}, inds::Vararg{Int,N}) where {T,N} = A.data[inds...]
Base.setindex! (A: :ArrayAndChar{T,N}, val, inds::Vararg{Int,N}) where {T,N} = A.data[inds...] = val

Base.showarg(io::I0, A::ArrayAndChar, toplevel) = print(io, typeof(A), " with char '", A.char, "'")

You might want broadcasting to preserve the char "metadata." First we define

Base.BroadcastStyle(: :Type{<:ArrayAndChar}) = Broadcast.ArrayStyle{ArrayAndChar}()

This means we must also define a corresponding similar method:

function Base.similar(bc::Broadcast.Broadcasted{Broadcast.ArrayStyle{ArrayAndChar}}, ::Type{ElType}) where ElType
# Scan the inputs for the ArrayAndChar:
A = find_aac(bc)
# Use the char field of A to create the output
ArrayAndChar(similar(Array{E1lType}, axes(bc)), A.char)

end

"“A = find_aac(As)" returns the first ArrayAndChar among the arguments."
find_aac(bc: :Base.Broadcast.Broadcasted) = find_aac(bc.args)
find_aac(args::Tuple) = find_aac(find_aac(args[1]), Base.tail(args))
find_aac(x) = x

find_aac(a: :ArrayAndChar, rest) = a

find_aac(::Any, rest) = find_aac(rest)

From these definitions, one obtains the following behavior:

julia> a = ArrayAndChar([1 2; 3 4], 'x')
2x2 ArrayAndChar{Int64,2} with char 'x':
1 2

3 4

julia> a .+ 1
2x2 ArrayAndChar{Int64,2} with char 'x':

2 3
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julia» a .+ [5,10]
2x2 ArrayAndChar{Int64,2} with char 'x"':

6 7

13 14

Extending broadcast with custom implementations

In general, a broadcast operation is represented by a lazy Broadcasted container that holds onto the function to be
applied alongside its arguments. Those arguments may themselves be more nested Broadcasted containers, forming a
large expression tree to be evaluated. A nested tree of Broadcasted containers is directly constructed by the implicit
dot syntax; 5 .+ 2.#*x is transiently represented by Broadcasted(+, 5, Broadcasted(*, 2, x)), for example. This is
invisible to users as it is immediately realized through a call to copy, but it is this container that provides the basis
for broadcast's extensibility for authors of custom types. The built-in broadcast machinery will then determine the
result type and size based upon the arguments, allocate it, and then finally copy the realization of the Broadcasted
object into it with a default copyto!(::AbstractArray, ::Broadcasted) method. The built-in fallback broadcast and
broadcast! methods similarly construct a transient Broadcasted representation of the operation so they can follow the
same codepath. This allows custom array implementations to provide their own copyto! specialization to customize
and optimize broadcasting. This is again determined by the computed broadcast style. This is such an important
part of the operation that it is stored as the first type parameter of the Broadcasted type, allowing for dispatch and

specialization.

For some types, the machinery to "fuse" operations across nested levels of broadcasting is not available or could
be done more efficiently incrementally. In such cases, you may need or want to evaluate x .* (x .+ 1) as if
it had been written broadcast(*, x, broadcast(+, x, 1)), where the inner operation is evaluated before tackling
the outer operation. This sort of eager operation is directly supported by a bit of indirection; instead of directly
constructing Broadcasted objects, Julia lowers the fused expression x .* (x .+ 1) to Broadcast.broadcasted(*, x,
Broadcast.broadcasted(+, x, 1)). Now, by default, broadcasted just calls the Broadcasted constructor to create the
lazy representation of the fused expression tree, but you can choose to override it for a particular combination of

function and arguments.

As an example, the builtin AbstractRange objects use this machinery to optimize pieces of broadcasted expressions
that can be eagerly evaluated purely in terms of the start, step, and length (or stop) instead of computing every single
element. Just like all the other machinery, broadcasted also computes and exposes the combined broadcast style of its
arguments, so instead of specializing on broadcasted(f, args...), you can specialize on broadcasted(::DestStyle,

f, args...) for any combination of style, function, and arguments.

For example, the following definition supports the negation of ranges:
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broadcasted(: :DefaultArrayStyle{1}, ::typeof(-), r::0OrdinalRange) = range(-first(r), step=-step(r),
— length=1length(r))

Extending in-place broadcasting

In-place broadcasting can be supported by defining the appropriate copyto!(dest, bc::Broadcasted) method. Be-
cause you might want to specialize either on dest or the specific subtype of bc, to avoid ambiguities between packages

we recommend the following convention.

If you wish to specialize on a particular style DestStyle, define a method for

copyto!(dest, bc::Broadcasted{DestStyle})

Optionally, with this form you can also specialize on the type of dest.

If instead you want to specialize on the destination type DestType without specializing on DestStyle, then you should

define a method with the following signature:

copyto!(dest: :DestType, bc::Broadcasted{Nothing})

This leverages a fallback implementation of copyto! that converts the wrapper into a Broadcasted{Nothing}. Conse-

quently, specializing on DestType has lower precedence than methods that specialize on DestStyle.

Similarly, you can completely override out-of-place broadcasting with a copy(: :Broadcasted) method.

Working with Broadcasted objects

In order to implement such a copy or copyto!, method, of course, you must work with the Broadcasted wrapper to

compute each element. There are two main ways of doing so:

+ Broadcast.flatten recomputes the potentially nested operation into a single function and flat list of argu-
ments. You are responsible for implementing the broadcasting shape rules yourself, but this may be helpful

in limited situations.

« Iterating over the CartesianIndices of the axes(: :Broadcasted) and using indexing with the resulting CartesianIndex

object to compute the result.

Writing binary broadcasting rules

The precedence rules are defined by binary BroadcastStyle calls:
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Base.BroadcastStyle(::Stylel, ::Style2) = Stylel2()

where Stylel2 is the BroadcastStyle you want to choose for outputs involving arguments of Stylel and Style2. For

example,

Base.BroadcastStyle(: :Broadcast.Style{Tuple}, ::Broadcast.AbstractArrayStyle{0}) = Broadcast.Style{Tuple}()

indicates that Tuple "wins" over zero-dimensional arrays (the output container will be a tuple). It is worth noting
that you do not need to (and should not) define both argument orders of this call; defining one is sufficient no matter

what order the user supplies the arguments in.

For AbstractArray types, defining a BroadcastStyle supersedes the fallback choice, Broadcast.DefaultArrayStyle,
DefaultArrayStyle and the abstract supertype, AbstractArrayStyle, store the dimensionality as a type parameter to

support specialized array types that have fixed dimensionality requirements.

DefaultArrayStyle "loses" to any other AbstractArrayStyle that has been defined because of the following methods:

BroadcastStyle(a: :AbstractArrayStyle{Any}, ::DefaultArrayStyle) = a
BroadcastStyle(a: :AbstractArrayStyle{N}, ::DefaultArrayStyle{N}) where N = a
BroadcastStyle(a: :AbstractArrayStyle{M}, ::DefaultArrayStyle{N}) where {M,N} =

typeof(a) (_max(Val(M),val(N)))

You do not need to write binary BroadcastStyle rules unless you want to establish precedence for two or more

non-DefaultArrayStyle types.

If your array type does have fixed dimensionality requirements, then you should subtype AbstractArrayStyle. For

example, the sparse array code has the following definitions:

struct SparseVecStyle <: Broadcast.AbstractArrayStyle{1} end
struct SparseMatStyle <: Broadcast.AbstractArrayStyle{2} end
Base.BroadcastStyle(: :Type{<:SparseVector}) = SparseVecStyle()

Base.BroadcastStyle(::Type{<:SparseMatrixCSC}) = SparseMatStyle()

Whenever you subtype AbstractArrayStyle, you also need to define rules for combining dimensionalities, by creating

a constructor for your style that takes a Val(N) argument. For example:

SparseVecStyle(::Val{0}) = SparseVecStyle()
SparseVecStyle(::Val{1}) = SparseVecStyle()
SparseVecStyle(::Val{2}) = SparseMatStyle()

SparseVecStyle(::Val{N}) where N = Broadcast.DefaultArrayStyle{N}()
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These rules indicate that the combination of a SparseVecStyle with 0- or 1-dimensional arrays yields another
SparseVecStyle, that its combination with a 2-dimensional array yields a SparseMatStyle, and anything of higher
dimensionality falls back to the dense arbitrary-dimensional framework. These rules allow broadcasting to keep the
sparse representation for operations that result in one or two dimensional outputs, but produce an Array for any

other dimensionality.
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Methods to implement

Brief description

size(A)

Returns a tuple containing the dimensions of A

getindex(A, i::Int)

(if IndexLinear) Linear scalar indexing

getindex(A,
I::Vararg{Int, N})

(if IndexCartesian, where N = ndims(A))
N-dimensional scalar indexing

setindex! (A, v, i::Int)

(if IndexLinear) Scalar indexed assignment

setindex! (A, v,
I::Vararg{Int, N})

(if IndexCartesian, where N = ndims(A))
N-dimensional scalar indexed assignment

Optional methods

Default definition

Brief description

IndexStyle(::Type)

IndexCartesian()

Returns either IndexLinear() or IndexCartesian().
See the description below.

getindex(A, I...)

defined in terms of
scalar getindex

Multidimensional and nonscalar indexing

setindex! (A, I...)

defined in terms of
scalar setindex!

Multidimensional and nonscalar indexed assignment

iterate defined in terms of [teration
scalar getindex
length(A) prod(size(A)) Number of elements
similar(A) similar(A, eltype(A), Return a mutable array with the same shape and

size(A))

element type

similar(A, ::Type{S})

similar(A, S, size(A))

Return a mutable array with the same shape and the
specified element type

similar(A, dims::Dims)

similar(A, eltype(A),
dims)

Return a mutable array with the same element type
and size dims

similar(A, ::Type{S},
dims: :Dims)

Array{S}(undef, dims)

Return a mutable array with the specified element
type and size

Non-traditional indices

Default definition

Brief description

axes(A)

map(OneTo, size(A))

Return the AbstractUnitRange of valid indices

similar(A, ::Type{S},
inds)

similar(A, S,
Base.to_shape(inds))

Return a mutable array with the specified indices inds
(see below)

similar(T::Union{Type, Func
inds)

tidtBase. to_shape(inds))

Return an array similar to T with the specified indices
inds (see below)
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Methods to Brief description
implement
strides(A) Return the distance in memory (in number of elements) between adjacent

elements in each dimension as a tuple. If A is an AbstractArray{T, 0}, this
should return an empty tuple.

Base.unsafe_convert(::Type{Ptr&&thrn the native address of an array.
A)
Optional methods Default | Brief description
defini-
tion
stride(A, strides(A) Return the distance in memory (in number of elements) between adjacent
i::Int) elements in dimension k.

Methods to implement

Brief description

Base.BroadcastStyle(::Type{SrcType}) =
SrcStyle()

Broadcasting behavior of SrcType

Base.similar(bc::Broadcasted{DestStyle},
::Type{E1Type})

Allocation of output container

Optional methods

Base.BroadcastStyle(::Stylel, ::Style2) =
Stylel2()

Precedence rules for mixing styles

Base.axes(x)

Declaration of the indices of x, as per axes(x).

Base.broadcastable(x)

Convert x to an object that has axes and supports
indexing

Bypassing default machinery

Base.copy(bc: :Broadcasted{DestStyle})

Custom implementation of broadcast

Base.copyto!(dest, bc::Broadcasted{DestStyle})

Custom implementation of broadcast!, specializing on
DestStyle

Base.copyto! (dest: :DestType,
bc::Broadcasted{Nothing})

Custom implementation of broadcast!, specializing on
DestType

Base.Broadcast.broadcasted(f, args...)

Override the default lazy behavior within a fused
expression

Base.Broadcast.instantiate(bc: :Broadcasted{DestSty

lé}Yerride the computation of the lazy broadcast's axes

INTERFACES
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Modules

Modules in Julia are separate variable workspaces, i.e. they introduce a new global scope. They are delimited syntac-
tically, inside module Name ... end. Modules allow you to create top-level definitions (aka global variables) without
worrying about name conflicts when your code is used together with somebody else's. Within a module, you can
control which names from other modules are visible (via importing), and specify which of your names are intended

to be public (via exporting).

The following example demonstrates the major features of modules. It is not meant to be run, but is shown for

illustrative purposes:

module MyModule

using Lib
using BigLib: thingl, thing2
import Base.show
export MyType, foo
struct MyType
X

end

bar(x) = 2x

foo(a: :MyType) = bar(a.x) + 1

show(io::I0, a::MyType) = print(io, "MyType $(a.x)")

end
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Note that the style is not to indent the body of the module, since that would typically lead to whole files being

indented.

This module defines a type MyType, and two functions. Function foo and type MyType are exported, and so will be

available for importing into other modules. Function bar is private to MyModule.

The statement using Lib means that a module called Lib will be available for resolving names as needed. When
a global variable is encountered that has no definition in the current module, the system will search for it among
variables exported by Lib and import it if it is found there. This means that all uses of that global within the current

module will resolve to the definition of that variable in Lib.

The statement using BigLib: thingl, thing2 brings just the identifiers thingl and thing2 into scope from module
BigLib. If these names refer to functions, adding methods to them will not be allowed (you may only "use" them, not

extend them).

The import keyword supports the same syntax as using. It does not add modules to be searched the way using does.

import also differs from using in that functions imported using import can be extended with new methods.

In MyModule above we wanted to add a method to the standard show function, so we had to write import Base.show.

Functions whose names are only visible via using cannot be extended.

Once a variable is made visible via using or import, a module may not create its own variable with the same name.
Imported variables are read-only; assigning to a global variable always affects a variable owned by the current

module, or else raises an error.

16.1 Summary of module usage

To load a module, two main keywords can be used: using and import. To understand their differences, consider the

following example:

module MyModule
export x, y

x() = "X

yO = "y"

pO = "p"

end

In this module we export the x and y functions (with the keyword export), and also have the non-exported function

p. There are several different ways to load the Module and its inner functions into the current workspace:
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Import Command

What is brought into scope

Available for method
extension

using MyModule

All exported names (x and y), MyModule.x,
MyModule.y and MyModule.p

MyModule.x, MyModule.y and
MyModule.p

using MyModule: x, p

x and p

import MyModule

MyModule.x, MyModule.y and MyModule.p

MyModule.x, MyModule.y and
MyModule.p

import MyModule.x, x and p x and p
MyModule.p
import MyModule: x, p x and p x and p

Modules and files

Files and file names are mostly unrelated to modules; modules are associated only with module expressions. One can

have multiple files per module, and multiple modules per file:

module Foo

include("file1l.j1")
include("file2.j1")

end

Including the same code in different modules provides mixin-like behavior. One could use this to run the same code

with different base definitions, for example testing code by running it with "safe" versions of some operators:

module Normal
include("mycode.j1")

end

module Testing
include("safe_operators.jl")
include("mycode.j1")

end

Standard modules

There are three important standard modules:
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« Core contains all functionality "built into" the language.
+ Base contains basic functionality that is useful in almost all cases.

+ Main is the top-level module and the current module, when Julia is started.

Default top-level definitions and bare modules

In addition to using Base, modules also automatically contain definitions of the eval and include functions, which

evaluate expressions/files within the global scope of that module.

If these default definitions are not wanted, modules can be defined using the keyword baremodule instead (note: Core

is still imported, as per above). In terms of baremodule, a standard module looks like this:

baremodule Mod

using Base

eval(x) = Core.eval(Mod, x)

include(p) = Base.include(Mod, p)

end

Relative and absolute module paths

Given the statement using Foo, the system consults an internal table of top-level modules to look for one named Foo.
If the module does not exist, the system attempts to require(:Foo), which typically results in loading code from an

installed package.

However, some modules contain submodules, which means you sometimes need to access a non-top-level module.
There are two ways to do this. The first is to use an absolute path, for example using Base.Sort. The second is to use

a relative path, which makes it easier to import submodules of the current module or any of its enclosing modules:

module Parent

module Utils

end

using .Utils
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end

Here module Parent contains a submodule Utils, and code in Parent wants the contents of Utils to be visible. This is
done by starting the using path with a period. Adding more leading periods moves up additional levels in the module

hierarchy. For example using ..Utils would look for Utils in Parent's enclosing module rather than in Parent itself.

Note that relative-import qualifiers are only valid in using and import statements.

Namespace miscellanea

If a name is qualified (e.g. Base.sin), then it can be accessed even if it is not exported. This is often useful when
debugging. It can also have methods added to it by using the qualified name as the function name. However, due to
syntactic ambiguities that arise, if you wish to add methods to a function in a different module whose name contains
only symbols, such as an operator, Base.+ for example, you must use Base. :+ to refer to it. If the operator is more

than one character in length you must surround it in brackets, such as: Base. : (==).

Macro names are written with @ in import and export statements, e.g. import Mod.@mac. Macros in other modules can

be invoked as Mod.@mac or @Mod.mac.
The syntax M.x = y does not work to assign a global in another module; global assignment is always module-local.

A variable name can be "reserved" without assigning to it by declaring it as global x. This prevents name conflicts

for globals initialized after load time.

Module initialization and precompilation

Large modules can take several seconds to load because executing all of the statements in a module often involves

compiling a large amount of code. Julia creates precompiled caches of the module to reduce this time.

The incremental precompiled module file are created and used automatically when using import or using to load
a module. This will cause it to be automatically compiled the first time it is imported. Alternatively, you can
manually call Base.compilecache(modulename). The resulting cache files will be stored in DEPOT_PATH[1]/compiled/.
Subsequently, the module is automatically recompiled upon using or import whenever any of its dependencies
change; dependencies are modules it imports, the Julia build, files it includes, or explicit dependencies declared by

include_dependency(path) in the module file(s).

For file dependencies, a change is determined by examining whether the modification time (mtime) of each file loaded
by include or added explicitly by include_dependency is unchanged, or equal to the modification time truncated to
the nearest second (to accommodate systems that can't copy mtime with sub-second accuracy). It also takes into

account whether the path to the file chosen by the search logic in require matches the path that had created the
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precompile file. It also takes into account the set of dependencies already loaded into the current process and won't
recompile those modules, even if their files change or disappear, in order to avoid creating incompatibilities between

the running system and the precompile cache.

If you know that a module is not safe to precompile your module (for example, for one of the reasons described
below), you should put __precompile__(false) in the module file (typically placed at the top). This will cause
Base.compilecache to throw an error, and will cause using [ import to load it directly into the current process and skip
the precompile and caching. This also thereby prevents the module from being imported by any other precompiled

module.

You may need to be aware of certain behaviors inherent in the creation of incremental shared libraries which may
require care when writing your module. For example, external state is not preserved. To accommodate this, explicitly
separate any initialization steps that must occur at runtime from steps that can occur at compile time. For this
purpose, Julia allows you to define an __init__() function in your module that executes any initialization steps
that must occur at runtime. This function will not be called during compilation (--output-*). Effectively, you can
assume it will be run exactly once in the lifetime of the code. You may, of course, call it manually if necessary, but
the default is to assume this function deals with computing state for the local machine, which does not need to be —
or even should not be — captured in the compiled image. It will be called after the module is loaded into a process,
including if it is being loaded into an incremental compile (--output-incremental=yes), but not if it is being loaded

into a full-compilation process.

In particular, if you define a function __init__() in a module, then Julia will call __init__() immediately after the
module is loaded (e.g., by import, using, or require) at runtime for the first time (i.e., __init__is only called once, and
only after all statements in the module have been executed). Because it is called after the module is fully imported,
any submodules or other imported modules have their __init__ functions called before the __init__ of the enclosing

module.

Two typical uses of __init__ are calling runtime initialization functions of external C libraries and initializing global
constants that involve pointers returned by external libraries. For example, suppose that we are calling a C library
libfoo that requires us to call a foo_init() initialization function at runtime. Suppose that we also want to define
a global constant foo_data_ptr that holds the return value of a void *foo_data() function defined by libfoo - this
constant must be initialized at runtime (not at compile time) because the pointer address will change from run to

run. You could accomplish this by defining the following __init__ function in your module:

const foo_data_ptr = Ref{Ptr{Cvoid}}(0)
function __init__()
ccall((:foo_init, :1libfoo), Cvoid, ())
foo_data_ptr[] = ccall((:foo_data, :libfoo), Ptr{Cvoid}, ())

nothing

end
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Notice that it is perfectly possible to define a global inside a function like __init__; this is one of the advantages of
using a dynamic language. But by making it a constant at global scope, we can ensure that the type is known to the
compiler and allow it to generate better optimized code. Obviously, any other globals in your module that depends

on foo_data_ptr would also have to be initialized in __init__.

Constants involving most Julia objects that are not produced by ccall do not need to be placed in __init__: their
definitions can be precompiled and loaded from the cached module image. This includes complicated heap-allocated
objects like arrays. However, any routine that returns a raw pointer value must be called at runtime for precompi-
lation to work (Ptr objects will turn into null pointers unless they are hidden inside an isbits object). This includes

the return values of the Julia functions cfunction and pointer.

Dictionary and set types, or in general anything that depends on the output of a hash(key) method, are a trickier case.
In the common case where the keys are numbers, strings, symbols, ranges, Expr, or compositions of these types (via
arrays, tuples, sets, pairs, etc.) they are safe to precompile. However, for a few other key types, such as Function or
DataType and generic user-defined types where you haven't defined a hash method, the fallback hash method depends
on the memory address of the object (via its objectid) and hence may change from run to run. If you have one of
these key types, or if you aren't sure, to be safe you can initialize this dictionary from within your __init__ function.
Alternatively, you can use the IdDict dictionary type, which is specially handled by precompilation so that it is safe

to initialize at compile-time.

When using precompilation, it is important to keep a clear sense of the distinction between the compilation phase
and the execution phase. In this mode, it will often be much more clearly apparent that Julia is a compiler which

allows execution of arbitrary Julia code, not a standalone interpreter that also generates compiled code.

Other known potential failure scenarios include:

1. Global counters (for example, for attempting to uniquely identify objects). Consider the following code snippet:

mutable struct UniquedById
myid: :Int
let counter = 0
UniquedById() = new(counter += 1)
end

end

while the intent of this code was to give every instance a unique id, the counter value is recorded at the end of
compilation. All subsequent usages of this incrementally compiled module will start from that same counter

value.

Note that objectid (which works by hashing the memory pointer) has similar issues (see notes on Dict usage

below).
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One alternative is to use a macro to capture @ _MODULE__ and store it alone with the current counter value,

however, it may be better to redesign the code to not depend on this global state.

2. Associative collections (such as Dict and Set) need to be re-hashed in __init__. (In the future, a mechanism

may be provided to register an initializer function.)

3. Depending on compile-time side-effects persisting through load-time. Example include: modifying arrays or
other variables in other Julia modules; maintaining handles to open files or devices; storing pointers to other

system resources (including memory);

4. Creating accidental "copies” of global state from another module, by referencing it directly instead of via its

lookup path. For example, (in global scope):

#mystdout = Base.stdout #= will not work correctly, since this will copy Base.stdout into this module =#
# instead use accessor functions:

getstdout() = Base.stdout #= best option =#

# or move the assignment into the runtime:

__init__() = global mystdout = Base.stdout #= also works =#

Several additional restrictions are placed on the operations that can be done while precompiling code to help the user

avoid other wrong-behavior situations:

1. Calling eval to cause a side-effect in another module. This will also cause a warning to be emitted when the

incremental precompile flag is set.

2. global const statements from local scope after __init__() has been started (see issue #12010 for plans to add

an error for this)

3. Replacing a module is a runtime error while doing an incremental precompile.

A few other points to be aware of:

1. No code reload /[ cache invalidation is performed after changes are made to the source files themselves, (in-

cluding by Pkg.update), and no cleanup is done after Pkg.rm

2. The memory sharing behavior of a reshaped array is disregarded by precompilation (each view gets its own

copy)

3. Expecting the filesystem to be unchanged between compile-time and runtime e.g. @__FILE__/source_path() to
find resources at runtime, or the BinDeps @checked_1ib macro. Sometimes this is unavoidable. However, when
possible, it can be good practice to copy resources into the module at compile-time so they won't need to be

found at runtime.
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4. WeakRef objects and finalizers are not currently handled properly by the serializer (this will be fixed in an

upcoming release).

5. It is usually best to avoid capturing references to instances of internal metadata objects such as Method,
MethodInstance, MethodTable, TypeMapLevel, TypeMapEntry and fields of those objects, as this can confuse the
serializer and may not lead to the outcome you desire. It is not necessarily an error to do this, but you simply
need to be prepared that the system will try to copy some of these and to create a single unique instance of

others.

It is sometimes helpful during module development to turn off incremental precompilation. The command line flag
--compiled-modules={yesino} enables you to toggle module precompilation on and off. When Julia is started with
--compiled-modules=no the serialized modules in the compile cache are ignored when loading modules and module
dependencies. Base.compilecache can still be called manually. The state of this command line flag is passed to

Pkg.build to disable automatic precompilation triggering when installing, updating, and explicitly building packages.
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Documentation

Julia enables package developers and users to document functions, types and other objects easily via a built-in

documentation system since Julia 0.4.

The basic syntax is simple: any string appearing at the top-level right before an object (function, macro, type or
instance) will be interpreted as documenting it (these are called docstrings). Note that no blank lines or comments

may intervene between a docstring and the documented object. Here is a basic example:

"Tell whether there are too foo items in the array."

foo(xs::Array) = ...

Documentation is interpreted as Markdown, so you can use indentation and code fences to delimit code examples
from text. Technically, any object can be associated with any other as metadata; Markdown happens to be the default,

but one can construct other string macros and pass them to the @oc macro just as well.

Note

Markdown support is implemented in the Markdown standard library and for a full list of supported

syntax see the documentation.

Here is a more complex example, still using Markdown:

bar(x[, yI1)

Compute the Bar index between “x* and "y . If "y  is missing, compute

the Bar index between all pairs of columns of “x .

237


https://en.wikipedia.org/wiki/Markdown

238

1

CHAPTER 17. DOCUMENTATION

# Examples
" julia-repl

julia> bar([1, 21, [1, 2])

function bar(x, y) ...

As in the example above, we recommend following some simple conventions when writing documentation:

1.

Always show the signature of a function at the top of the documentation, with a four-space indent so that it

is printed as Julia code.

This can be identical to the signature present in the Julia code (like mean(x: :AbstractArray)), or a simplified
form. Optional arguments should be represented with their default values (i.e. f(x, y=1)) when possible,
following the actual Julia syntax. Optional arguments which do not have a default value should be put in
brackets (i.e. f(x[, y1) and f(x[, y[, z]1)). An alternative solution is to use several lines: one without
optional arguments, the other(s) with them. This solution can also be used to document several related methods
of a given function. When a function accepts many keyword arguments, only include a <keyword arguments>
placeholder in the signature (i.e. f(x; <keyword arguments>)), and give the complete list under an # Arguments

section (see point 4 below).

Include a single one-line sentence describing what the function does or what the object represents after the

simplified signature block. If needed, provide more details in a second paragraph, after a blank line.

The one-line sentence should use the imperative form ("Do this", "Return that") instead of the third person (do
not write "Returns the length...") when documenting functions. It should end with a period. If the meaning of
a function cannot be summarized easily, splitting it into separate composable parts could be beneficial (this

should not be taken as an absolute requirement for every single case though).

Do not repeat yourself.

Since the function name is given by the signature, there is no need to start the documentation with "The
function bar...": go straight to the point. Similarly, if the signature specifies the types of the arguments,

mentioning them in the description is redundant.

Only provide an argument list when really necessary.

For simple functions, it is often clearer to mention the role of the arguments directly in the description of the
function's purpose. An argument list would only repeat information already provided elsewhere. However,

providing an argument list can be a good idea for complex functions with many arguments (in particular
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keyword arguments). In that case, insert it after the general description of the function, under an # Arguments
header, with one - bullet for each argument. The list should mention the types and default values (if any) of

the arguments:

# Arguments
- “n::Integer’: the number of elements to compute.

- “dim::Integer=1": the dimensions along which to perform the computation.

Provide hints to related functions.

Sometimes there are functions of related functionality. To increase discoverability please provide a short list

of these in a See also: paragraph.

See also: [“bar! ](@ref), [ baz ](@ref), [ baaz ](@ref)

Include any code examples in an # Examples section.

Examples should, whenever possible, be written as doctests. A doctest is a fenced code block (see Code blocks)

starting with jldoctest and contains any number of julia> prompts together with inputs and expected

outputs that mimic the Julia REPL.

Note
Doctests are enabled by Documenter.j1. For more detailed documentation see Documenter's man-

ual.

For example in the following docstring a variable a is defined and the expected result, as printed in a Julia

REPL, appears afterwards:

Some nice documentation here.

# Examples
“"“jldoctest
julia> a = [1 2; 3 4]

2x2 Array{Int64,2}:
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Warning

Calling rand and other RNG-related functions should be avoided in doctests since they will not
produce consistent outputs during different Julia sessions. If you would like to show some random
number generation related functionality, one option is to explicitly construct and seed your own
MersenneTwister (or other pseudorandom number generator) and pass it to the functions you are

doctesting.

Operating system word size (Int32 or Int64) as well as path separator differences (/ or \) will also

affect the reproducibility of some doctests.

Note that whitespace in your doctest is significant! The doctest will fail if you misalign the output

of pretty-printing an array, for example.

You can then run make -C doc doctest=true to run all the doctests in the Julia Manual and API documentation,

which will ensure that your example works.

To indicate that the output result is truncated, you may write [...] at the line where checking should stop.
This is useful to hide a stacktrace (which contains non-permanent references to lines of julia code) when the

doctest shows that an exception is thrown, for example:

""" jldoctest
julia> div(1, 0)
ERROR: DivideError: integer division error

[...]

Examples that are untestable should be written within fenced code blocks starting with ~~ " julia so that they

are highlighted correctly in the generated documentation.

Tip
Wherever possible examples should be self-contained and runnable so that readers are able to try

them out without having to include any dependencies.

Use backticks to identify code and equations.

Julia identifiers and code excerpts should always appear between backticks ~ to enable highlighting. Equations

in the LaTeX syntax can be inserted between double backticks *~. Use Unicode characters rather than their

LaTeX escape sequence, i.e. ~"a = 1°° rather than ~“\\alpha = 1",

Place the starting and ending characters on lines by themselves.

That is, write:
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f(x, y) = ...

rather than:

f(x, y) = ...
This makes it more clear where docstrings start and end.

9. Respect the line length limit used in the surrounding code.

Docstrings are edited using the same tools as code. Therefore, the same conventions should apply. It is advised

to add line breaks after 92 characters.

10. Provide information allowing custom types to implement the function in an # Implementation section. These
implementation details intended for developers rather than users, explaining e.g. which functions should be
overridden and which functions automatically use appropriate fallbacks, are better kept separate from the

main description of the function's behavior.

17.1 Accessing Documentation

Documentation can be accessed at the REPL or in [Julia by typing ? followed by the name of a function or macro,

and pressing Enter. For example,

7cos
?@time

e

will bring up docs for the relevant function, macro or string macro respectively. In Juno using Ctr1-J, Ctrl-D will

bring up documentation for the object under the cursor.

17.2 Functions & Methods

Functions in Julia may have multiple implementations, known as methods. While it's good practice for generic

functions to have a single purpose, Julia allows methods to be documented individually if necessary. In general,


https://github.com/JuliaLang/IJulia.jl
http://junolab.org
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only the most generic method should be documented, or even the function itself (i.e. the object created without any
methods by function bar end). Specific methods should only be documented if their behaviour differs from the more

generic ones. In any case, they should not repeat the information provided elsewhere. For example:

*(X, Y, Z...)

Multiplication operator. “x % y * z *...  calls this function with multiple

arguments, i.e. “*(x, y, z...) .

function *(x, y, z...)
# ... [implementation sold separately] ...

end

*(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them.

function *(x::AbstractString, y::AbstractString, z::AbstractString...)
# ... [insert secret sauce here] ...

end

help?> *

search: * .x

*(X, Y, Z...)

Multiplication operator. x * y * z *... calls this function with multiple

arguments, i.e. *(x,y,z...).

#*(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them.

When retrieving documentation for a generic function, the metadata for each method is concatenated with the catdoc

function, which can of course be overridden for custom types.
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17.3 Advanced Usage

The @doc macro associates its first argument with its second in a per-module dictionary called META.

To make it easier to write documentation, the parser treats the macro name @doc specially: if a call to @doc has one
argument, but another expression appears after a single line break, then that additional expression is added as an
argument to the macro. Therefore the following syntax is parsed as a 2-argument call to @doc:

@doc raw

f(x) = x

This makes it possible to use expressions other than normal string literals (such as the raw"" string macro) as a

docstring.

When used for retrieving documentation, the @oc macro (or equally, the doc function) will search all META dictionaries
for metadata relevant to the given object and return it. The returned object (some Markdown content, for example)
will by default display itself intelligently. This design also makes it easy to use the doc system in a programmatic

way; for example, to re-use documentation between different versions of a function:

@doc "..." foo!

@doc (@doc foo!) foo

Or for use with Julia's metaprogramming functionality:

for (f, op) in ((:add, :+), (:subtract, :-), (:multiply, :*), (:divide, :/))
@eval begin
$f(a,b) = $op(a,b)
end
end

@doc "“add(a,b)” adds "a’ and b together" add

@doc "“subtract(a,b)” subtracts “b® from “a " subtract

Documentation written in non-toplevel blocks, such as begin, if, for, and let, is added to the documentation system

as blocks are evaluated. For example:

if condition()
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f(x) = x

end

will add documentation to f(x) when condition() is true. Note that even if f(x) goes out of scope at the end of the

block, its documentation will remain.

Dynamic documentation

Sometimes the appropriate documentation for an instance of a type depends on the field values of that instance,
rather than just on the type itself. In these cases, you can add a method to Docs.getdoc for your custom type that

returns the documentation on a per-instance basis. For instance,

struct MyType
value: :String
end

Docs.getdoc(t: :MyType) = "Documentation for MyType with value $(t.value)"

x = MyType("x")

y = MyType("y")

?x will display "Documentation for MyType with value x" while ?y will display "Documentation for MyType with

value y".

17.4 Syntax Guide

A comprehensive overview of all documentable Julia syntax. In the following examples "..." is used to illustrate an

arbitrary docstring.

$ and \ characters

The $ and \ characters are still parsed as string interpolation or start of an escape sequence in docstrings too. The

raw"" string macro together with the @doc macro can be used to avoid having to escape them. This is handy when the

docstrings include LaTeX or Julia source code examples containing interpolation:

@doc raw"""
“"math

\LaTeX
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function f end

Functions and Methods

function f end

£
Adds docstring "..." to the function f. The first version is the preferred syntax, however both are equivalent.
f(x) = x

function f(x)
X

end

f(x)

Adds docstring "..." to the method f(::Any).

fx, y=1) =x+y

Adds docstring "..." to two Methods, namely f(::Any) and f(::Any, ::Any).

Macros

macro m(x) end

Adds docstring "..." to the @m(: :Any) macro definition.

:(@m)
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Adds docstring "..." to the macro named @m.

Types

abstract type T1 end

mutable struct T2

end

struct T3

end

Adds the docstring "..." to types T1, T2, and T3.

struct T
e
X

et

end

Adds docstring "..." to type T, "x" to field T.x and "y" to field T.y. Also applicable to mutable struct types.

Modules

module M end

module M

end
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Adds docstring "..." to the ModuleM. Adding the docstring above the Module is the preferred syntax, however both are

equivalent.

baremodule M
# ...
end

baremodule M

import Base: @doc

f(x) = x

end

Documenting a baremodule by placing a docstring above the expression automatically imports @doc into the module.
These imports must be done manually when the module expression is not documented. Empty baremodules cannot be

documented.

Global Variables

const a =1

global ¢ = 3

Adds docstring "..." to the Bindings a, b, and c.

Bindings are used to store a reference to a particular Symbol in a Module without storing the referenced value itself.

Note

When a const definition is only used to define an alias of another definition, such as is the case with
the function div and its alias + in Base, do not document the alias and instead document the actual

function.
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If the alias is documented and not the real definition then the docsystem (? mode) will not return the

docstring attached to the alias when the real definition is searched for.

For example you should write

f(x) =x+1

const alias = f

rather than

f(x) =x+1

const alias = f

sym

Adds docstring "..." to the value associated with sym. Users should prefer documenting sym at its definition.

Multiple Objects

Adds docstring "..." to a and b each of which should be a documentable expression. This syntax is equivalent to

Any number of expressions many be documented together in this way. This syntax can be useful when two functions

are related, such as non-mutating and mutating versions f and f!.

Macro-generated code

@m expression
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Adds docstring . .." to expression generated by expanding @m expression. This allows for expressions decorated with

@inline, @noinline, @generated, or any other macro to be documented in the same way as undecorated expressions.

Macro authors should take note that only macros that generate a single expression will automatically support doc-
strings. If a macro returns a block containing multiple subexpressions then the subexpression that should be docu-

mented must be marked using the @ _doc__ macro.

The @enum macro makes use of @__doc__ to allow for documenting Enums. Examining its definition should serve as an

example of how to use @__doc__ correctly.

Core.@__doc__ — Macro.

@__doc__(ex)

Low-level macro used to mark expressions returned by a macro that should be documented. If more than one

expression is marked then the same docstring is applied to each expression.

macro example(f)
quote
$(HO =0
@__doc__ $(f)(x) =1
$(H(x, y) =2
end |> esc

end

@__doc__ has no effect when a macro that uses it is not documented.

source


https://github.com/JuliaLang/julia/blob/788b2c77c10c2160f4794a4d4b6b81a95a90940c/base/docs/Docs.jl#L426-L441




Chapter 18

Metaprogramming

The strongest legacy of Lisp in the Julia language is its metaprogramming support. Like Lisp, Julia represents its
own code as a data structure of the language itself. Since code is represented by objects that can be created and
manipulated from within the language, it is possible for a program to transform and generate its own code. This
allows sophisticated code generation without extra build steps, and also allows true Lisp-style macros operating at
the level of abstract syntax trees. In contrast, preprocessor "macro” systems, like that of C and C++, perform textual
manipulation and substitution before any actual parsing or interpretation occurs. Because all data types and code in
Julia are represented by Julia data structures, powerful reflection capabilities are available to explore the internals

of a program and its types just like any other data.

18.1 Program representation

Every Julia program starts life as a string:

julia» prog = "1 + 1"

"1+ 1"

What happens next?

The next step is to parse each string into an object called an expression, represented by the Julia type Expr:

julia> ex1 = Meta.parse(prog)

(1+1)

julia> typeof(exl)

Expr

251
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Expr objects contain two parts:

+ a Symbol identifying the kind of expression. A symbol is an interned string identifier (more discussion below).

julia> ex1.head

:call

- the expression arguments, which may be symbols, other expressions, or literal values:

julia> exl.args
3-element Array{Any,1}:

o+

Expressions may also be constructed directly in prefix notation:

julia> ex2 = Expr(:call, :+, 1, 1)
:(1+1)

The two expressions constructed above — by parsing and by direct construction — are equivalent:

julia> ex1l == ex2

true

The key point here is that Julia code is internally represented as a data structure that is accessible from the language

itself.

The dump function provides indented and annotated display of Expr objects:

julia> dump(ex2)
Expr
head: Symbol call
args: Array{Any}((3,))
1: Symbol +
2: Int64 1

3: Int64 1
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Expr objects may also be nested:

julia> ex3 = Meta.parse("(4 + 4) / 2")

(4 +4) /2

Another way to view expressions is with Meta.show_sexpr, which displays the S-expression form of a given Expr,

which may look very familiar to users of Lisp. Here's an example illustrating the display on a nested Expr:

julia> Meta.show_sexpr(ex3)

(:call, :/, (:call, :+, 4, 4), 2)
Symbols
The : character has two syntactic purposes in Julia. The first form creates a Symbol, an interned string used as one

building-block of expressions:

julia> :foo

:foo

julia> typeof(ans)

Symbol

The Symbol constructor takes any number of arguments and creates a new symbol by concatenating their string

representations together:

julia> :foo == Symbol("foo™)

true

julia> Symbol("func",10)

:funcl10

julia> Symbol(:var,'_","sym")

rvar_sym

Note that to use : syntax, the symbol's name must be a valid identifier. Otherwise the Symbol(str) constructor must

be used.

In the context of an expression, symbols are used to indicate access to variables; when an expression is evaluated, a

symbol is replaced with the value bound to that symbol in the appropriate scope.

Sometimes extra parentheses around the argument to : are needed to avoid ambiguity in parsing:
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julia> :(:)

:(2)

julia> :(::)
HER)

18.2 Expressions and evaluation

Quoting

The second syntactic purpose of the : character is to create expression objects without using the explicit Expr con-
structor. This is referred to as quoting. The : character, followed by paired parentheses around a single statement of
Julia code, produces an Expr object based on the enclosed code. Here is example of the short form used to quote an

arithmetic expression:

julia> ex = :(a+bxc+1)

:(@a+bx*xc+1)

julia> typeof(ex)

Expr

(to view the structure of this expression, try ex.head and ex.args, or use dump as above or Meta.@dump)

Note that equivalent expressions may be constructed using Meta.parse or the direct Expr form:

julia> :(a + bxc + 1) ==
Meta.parse("a + bxc + 1") ==
Expr(:call, :+, :a, Expr(:call, :*, :b, :c), 1)

true

Expressions provided by the parser generally only have symbols, other expressions, and literal values as their args,
whereas expressions constructed by Julia code can have arbitrary run-time values without literal forms as args. In

this specific example, + and a are symbols, *(b,c) is a subexpression, and 1 is a literal 64-bit signed integer.

There is a second syntactic form of quoting for multiple expressions: blocks of code enclosed in quote ... end.

julia> ex = quote
X =1
y=2

X +y
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end

end

julia> typeof(ex)

Expr

Interpolation

Direct construction of Expr objects with value arguments is powerful, but Expr constructors can be tedious compared to
"normal" Julia syntax. As an alternative, Julia allows interpolation of literals or expressions into quoted expressions.

Interpolation is indicated by a prefix $.

In this example, the value of variable a is interpolated:

julia> a = 1;

julia> ex = :($a + b)

(1 +b)

Interpolating into an unquoted expression is not supported and will cause a compile-time error:

julia> $a + b

ERROR: syntax: "$" expression outside quote

In this example, the tuple (1,2,3) is interpolated as an expression into a conditional test:

julia> ex = :(a in $:((1,2,3)) )

:(ain (1, 2, 3))

The use of $ for expression interpolation is intentionally reminiscent of string interpolation and command interpola-

tion. Expression interpolation allows convenient, readable programmatic construction of complex Julia expressions.
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Splatting interpolation

Notice that the $ interpolation syntax allows inserting only a single expression into an enclosing expression. Occa-
sionally, you have an array of expressions and need them all to become arguments of the surrounding expression.
This can be done with the syntax $(xs...). For example, the following code generates a function call where the

number of arguments is determined programmatically:

julia> args = [:x, :y, :z];

julia> :(f(1, $(args...)))
(F(L, x5y, 2))
Nested quote

Naturally, it is possible for quote expressions to contain other quote expressions. Understanding how interpolation

works in these cases can be a bit tricky. Consider this example:

julia> x = : (1 + 2);

julia> e = quote quote $x end end
quote

#= none:1 =#

$(Expr(:quote, quote

#= none:1 =#

$(Expr(:$, :x))
end))

end

Notice that the result contains Expr(:$, :x), which means that x has not been evaluated yet. In other words, the
$ expression "belongs to" the inner quote expression, and so its argument is only evaluated when the inner quote

expression is:

julia> eval(e)
quote
#= none:1 =#

1+2

end

However, the outer quote expression is able to interpolate values inside the $ in the inner quote. This is done with

multiple $s:
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julia> e = quote quote $$x end end
quote

#= none:1 =#

$(Expr(:quote, quote

#= none:1 =#

$(Expr(:$, :(1 + 2)))
end))

end

Notice that : (1 + 2) now appears in the result instead of the symbol :x. Evaluating this expression yields an inter-

polated 3:

julia> eval(e)
quote
#= none:1 =#
3

end

The intuition behind this behavior is that x is evaluated once for each $: one $ works similarly to eval(:x), giving x's

value, while two $s do the equivalent of eval(eval(:x)).

QuoteNode

The usual representation of a quote form in an AST is an Expr with head :quote:

julia> dump(Meta.parse(":(1+2)"))
Expr
head: Symbol quote
args: Array{Any}((1,))
1: Expr
head: Symbol call
args: Array{Any}((3,))
1: Symbol +
2: Int64 1

3: Int64 2

As we have seen, such expressions support interpolation with $. However, in some situations it is necessary to quote
code without performing interpolation. This kind of quoting does not yet have syntax, but is represented internally

as an object of type QuoteNode:
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julia> eval(Meta.quot(Expr(:$, :(1+2))))
3

julia> eval(QuoteNode(Expr(:$, :(1+2))))
(($(Expr(:$, :(1 + 2))))

The parser yields QuoteNodes for simple quoted items like symbols:

julia> dump(Meta.parse(":x"))
QuoteNode

value: Symbol x

QuoteNode can also be used for certain advanced metaprogramming tasks.

eval and effects

Given an expression object, one can cause Julia to evaluate (execute) it at global scope using eval:

julia> : (1 + 2)

:(1+2)

julia> eval(ans)

3

julia> ex = :(a + b)

:(a+b)

julia> eval(ex)

ERROR: UndefVarError: b not defined
[...]

julia> a = 1; b = 2;

julia> eval(ex)

3

Every module has its own eval function that evaluates expressions in its global scope. Expressions passed to eval
are not limited to returning values — they can also have side-effects that alter the state of the enclosing module's

environment:
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julia> ex = :(x = 1)

(x=1)

julia> x

ERROR: UndefVarError: x not defined

julia> eval(ex)

1

julia> x

1

Here, the evaluation of an expression object causes a value to be assigned to the global variable x.
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Since expressions are just Expr objects which can be constructed programmatically and then evaluated, it is possible

to dynamically generate arbitrary code which can then be run using eval. Here is a simple example:

julia> a = 1;

julia> ex = Expr(:call, :+, a, :b)

(1 +b)

julia> a = 0; b = 2;

julia> eval(ex)

3

The value of a is used to construct the expression ex which applies the + function to the value 1 and the variable b.

Note the important distinction between the way a and b are used:

« The value of the variable a at expression construction time is used as an immediate value in the expression.

Thus, the value of a when the expression is evaluated no longer matters: the value in the expression is already

1, independent of whatever the value of a might be.

« On the other hand, the symbol :b is used in the expression construction, so the value of the variable b at that

time is irrelevant — :b is just a symbol and the variable b need not even be defined. At expression evaluation

time, however, the value of the symbol :b is resolved by looking up the value of the variable b.



260 CHAPTER 18. METAPROGRAMMING

Functions on Expressions

As hinted above, one extremely useful feature of Julia is the capability to generate and manipulate Julia code within
Julia itself. We have already seen one example of a function returning Expr objects: the parse function, which takes
a string of Julia code and returns the corresponding Expr. A function can also take one or more Expr objects as

arguments, and return another Expr. Here is a simple, motivating example:

julia> function math_expr(op, opl, op2)
expr = Expr(:call, op, opl, op2)
return expr
end

math_expr (generic function with 1 method)

julia> ex = math_expr(:+, 1, Expr(:call, :*, 4, 5))

(1 +4%5)

julia> eval(ex)

21

As another example, here is a function that doubles any numeric argument, but leaves expressions alone:

julia> function make_expr2(op, oprl, opr2)
oprif, opr2f = map(x -> isa(x, Number) ? 2*x : x, (oprl, opr2))
retexpr = Expr(:call, op, oprlf, opr2f)
return retexpr
end

make_expr2 (generic function with 1 method)

julia> make_expr2(:+, 1, 2)

(2 +4)

julia> ex = make_expr2(:+, 1, Expr(:call, :*, 5, 8))

:(2+5%8)

julia> eval(ex)

4
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18.3 Macros

Macros provide a method to include generated code in the final body of a program. A macro maps a tuple of arguments
to a returned expression, and the resulting expression is compiled directly rather than requiring a runtime eval call.

Macro arguments may include expressions, literal values, and symbols.

Basics

Here is an extraordinarily simple macro:

julia> macro sayhello()
return :( println("Hello, world!") )
end

@sayhello (macro with 1 method)

Macros have a dedicated character in Julia's syntax: the @ (at-sign), followed by the unique name declared in a macro

NAME ... end block. In this example, the compiler will replace all instances of @sayhello with:

:( println("Hello, world!") )

When @sayhello is entered in the REPL, the expression executes immediately, thus we only see the evaluation result:

julia> @sayhello()

Hello, world!

Now, consider a slightly more complex macro:

julia> macro sayhello(name)
return :( println("Hello, ", $name) )
end

@sayhello (macro with 1 method)

This macro takes one argument: name. When @sayhello is encountered, the quoted expression is expanded to inter-

polate the value of the argument into the final expression:

julia> @sayhello("human")

Hello, human
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We can view the quoted return expression using the function macroexpand (important note: this is an extremely useful

tool for debugging macros):

julia> ex = macroexpand(Main, :(@sayhello("human™)) )

:(Main.println("Hello, ", "human™))

julia> typeof(ex)

Expr

We can see that the "human" literal has been interpolated into the expression.

There also exists a macro @macroexpand that is perhaps a bit more convenient than the macroexpand function:

julia> @macroexpand @sayhello "human"

:(println("Hello, ", "human"))

Hold up: why macros?

We have already seen a function f(::Expr...) -> Expr in a previous section. In fact, macroexpand is also such a

function. So, why do macros exist?

Macros are necessary because they execute when code is parsed, therefore, macros allow the programmer to generate
and include fragments of customized code before the full program is run. To illustrate the difference, consider the

following example:

julia> macro twostep(arg)
println("I execute at parse time. The argument is: ", arg)
return :(println("I execute at runtime. The argument is: ", $arg))
end

@twostep (macro with 1 method)

julia> ex = macroexpand(Main, :(@twostep :(1, 2, 3)) );

I execute at parse time. The argument is: $(Expr(:quote, :((1, 2, 3))))

The first call to println is executed when macroexpand is called. The resulting expression contains only the second

println:
julia> typeof(ex)

Expr

julia> ex

:(println("I execute at runtime. The argument is: ", $(Expr(:copyast, :($(QuoteNode(:((1, 2, 3)))))))))
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julia> eval(ex)

I execute at runtime. The argument is: (1, 2, 3)

Macro invocation

Macros are invoked with the following general syntax:

@name exprl expr2 ...

@name(exprl, expr2, ...)

Note the distinguishing @ before the macro name and the lack of commas between the argument expressions in the
first form, and the lack of whitespace after @rame in the second form. The two styles should not be mixed. For example,
the following syntax is different from the examples above; it passes the tuple (exprl, expr2, ...) as one argument

to the macro:

@name (exprl, expr2, ...)

An alternative way to invoke a macro over an array literal (or comprehension) is to juxtapose both without using
parentheses. In this case, the array will be the only expression fed to the macro. The following syntax is equivalent

(and different from @name [a b] * v):

@name[a b] * v

@name([a b]) * v

It is important to emphasize that macros receive their arguments as expressions, literals, or symbols. One way to

explore macro arguments is to call the show function within the macro body:

julia> macro showarg(x)
show(x)
# ... remainder of macro, returning an expression
end

@showarg (macro with 1 method)

julia> @showarg(a)

:a

julia> @showarg(1+1)
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(1 +1)

julia> @showarg(println("Yo!"))

:(println("Yo!"))

In addition to the given argument list, every macro is passed extra arguments named __source__ and __module__.

The argument __source__ provides information (in the form of a LineNumberNode object) about the parser location
of the @ sign from the macro invocation. This allows macros to include better error diagnostic information, and
is commonly used by logging, string-parser macros, and docs, for example, as well as to implement the @__LINE__,

@__FILE__, and @__DIR__ macros.

The location information can be accessed by referencing __source__.1line and __source__.file:

julia> macro __LOCATION__(); return QuoteNode(__source__); end

@__LOCATION__ (macro with 1 method)

julia> dump(
@ LOCATION (
)
LineNumberNode

line: Int64 2

file: Symbol none

The argument __module__ provides information (in the form of a Module object) about the expansion context of the
macro invocation. This allows macros to look up contextual information, such as existing bindings, or to insert the

value as an extra argument to a runtime function call doing self-reflection in the current module.

Building an advanced macro

Here is a simplified definition of Julia's @assert macro:

julia> macro assert(ex)
return :( $ex ? nothing : throw(AssertionError($(string(ex)))) )
end

@assert (macro with 1 method)

This macro can be used like this:
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julia> @assert 1 == 1.0

julia> @assert 1 ==

ERROR: AssertionError: 1 ==

In place of the written syntax, the macro call is expanded at parse time to its returned result. This is equivalent to

writing:

1 == 1.0 ? nothing : throw(AssertionError("1 == 1.0"))

1 == 0 7 nothing : throw(AssertionError("1 == 0"))

That is, in the first call, the expression : (1 == 1.0) is spliced into the test condition slot, while the value of string(: (1
== 1.0)) is spliced into the assertion message slot. The entire expression, thus constructed, is placed into the syntax
tree where the @assert macro call occurs. Then at execution time, if the test expression evaluates to true, then nothing
is returned, whereas if the test is false, an error is raised indicating the asserted expression that was false. Notice that
it would not be possible to write this as a function, since only the value of the condition is available and it would be

impossible to display the expression that computed it in the error message.

The actual definition of @assert in Julia Base is more complicated. It allows the user to optionally specify their
own error message, instead of just printing the failed expression. Just like in functions with a variable number of

arguments (7181912} Sk42)| this is specified with an ellipses following the last argument:

julia> macro assert(ex, msgs...)
msg_body = isempty(msgs) ? ex : msgs[1]
msg = string(msg_body)
return :($ex ? nothing : throw(AssertionError($msg)))
end

@assert (macro with 1 method)

Now @assert has two modes of operation, depending upon the number of arguments it receives! If there's only
one argument, the tuple of expressions captured by msgs will be empty and it will behave the same as the simpler
definition above. But now if the user specifies a second argument, it is printed in the message body instead of the

failing expression. You can inspect the result of a macro expansion with the aptly named @macroexpand macro:

julia> @macroexpand @assert a ==
:(if Main.a == Main.b
Main.nothing
else

Main.throw(Main.AssertionError("a == b"))
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end)

julia> @macroexpand @assert a==b "a should equal b!"
:(if Main.a == Main.b
Main.nothing
else
Main.throw(Main.AssertionError("a should equal b!"))

end)

There is yet another case that the actual @assert macro handles: what if, in addition to printing "a should equal
b," we wanted to print their values? One might naively try to use string interpolation in the custom message, e.g.,
@assert a==b "a ($a) should equal b ($b)!", but this won't work as expected with the above macro. Can you see

why? Recall from string interpolation that an interpolated string is rewritten to a call to string. Compare:

julia> typeof(:("a should equal b"))

String

julia> typeof(:("a ($a) should equal b ($b)!"))

Expr

julia> dump(:("a ($a) should equal b ($b)!"))
Expr
head: Symbol string
args: Array{Any}((5,))
1: String "a ("
2: Symbol a
3: String ") should equal b ("
4: Symbol b

5: String ")!"

So now instead of getting a plain string in msg_body, the macro is receiving a full expression that will need to be
evaluated in order to display as expected. This can be spliced directly into the returned expression as an argument

to the string call; see error.jl for the complete implementation.

The @assert macro makes great use of splicing into quoted expressions to simplify the manipulation of expressions

inside the macro body.


https://github.com/JuliaLang/julia/blob/master/base/error.jl
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Hygiene

An issue that arises in more complex macros is that of hygiene. In short, macros must ensure that the variables they
introduce in their returned expressions do not accidentally clash with existing variables in the surrounding code they
expand into. Conversely, the expressions that are passed into a macro as arguments are often expected to evaluate in
the context of the surrounding code, interacting with and modifying the existing variables. Another concern arises
from the fact that a macro may be called in a different module from where it was defined. In this case we need
to ensure that all global variables are resolved to the correct module. Julia already has a major advantage over
languages with textual macro expansion (like C) in that it only needs to consider the returned expression. All the

other variables (such as msg in @assert above) follow the normal scoping block behavior.

To demonstrate these issues, let us consider writing a @ime macro that takes an expression as its argument, records
the time, evaluates the expression, records the time again, prints the difference between the before and after times,

and then has the value of the expression as its final value. The macro might look like this:

macro time(ex)
return quote
local t@ = time()
local val = $ex
local t1 = time()
println("elapsed time: ", t1-t@, " seconds")
val

end

end

Here, we want t0, t1, and val to be private temporary variables, and we want time to refer to the time function in
Julia Base, not to any time variable the user might have (the same applies to println). Imagine the problems that
could occur if the user expression ex also contained assignments to a variable called t0, or defined its own time

variable, We might get errors, or mysteriously incorrect behavior.

Julia's macro expander solves these problems in the following way. First, variables within a macro result are classified
as either local or global. A variable is considered local if it is assigned to (and not declared global), declared local,
or used as a function argument name. Otherwise, it is considered global. Local variables are then renamed to be
unique (using the gensym function, which generates new symbols), and global variables are resolved within the macro
definition environment. Therefore both of the above concerns are handled; the macro's locals will not conflict with

any user variables, and time and println will refer to the Julia Base definitions.

One problem remains however. Consider the following use of this macro:


https://en.wikipedia.org/wiki/Hygienic_macro
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module MyModule

import Base.@time

time() = ... # compute something

@time time()

end
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Here the user expression ex is a call to time, but not the same time function that the macro uses. It clearly refers to

MyModule.time. Therefore we must arrange for the code in ex to be resolved in the macro call environment. This is

done by "escaping” the expression with esc:

macro time(ex)

local val = $(esc(ex))

end

An expression wrapped in this manner is left alone by the macro expander and simply pasted into the output verbatim.

Therefore it will be resolved in the macro call environment.

This escaping mechanism can be used to "violate" hygiene when necessary, in order to introduce or manipulate user

variables. For example, the following macro sets x to zero in the call environment:

julia> macro zerox()
return esc(:(x = 0))
end

@zerox (macro with 1 method)

julia> function foo()
x =1
@zerox
return x # is zero
end

foo (generic function with 1 method)

julia> foo()

0
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This kind of manipulation of variables should be used judiciously, but is occasionally quite handy.

Getting the hygiene rules correct can be a formidable challenge. Before using a macro, you might want to consider
whether a function closure would be sufficient. Another useful strategy is to defer as much work as possible to
runtime. For example, many macros simply wrap their arguments in a QuoteNode or other similar Expr. Some examples
of this include @task body which simply returns schedule(Task(() -> $body)), and @eval expr, which simply returns

eval(QuoteNode(expr)).

To demonstrate, we might rewrite the @time example above as:

macro time(expr)
return :(timeit(() -> $(esc(expr))))
end

function timeit(f)

t0 = time()
val = f()
t1 = time()

println("elapsed time: ", t1-t@, " seconds")
return val

end

However, we don't do this for a good reason: wrapping the expr in a new scope block (the anonymous function) also
slightly changes the meaning of the expression (the scope of any variables in it), while we want @time to be usable

with minimum impact on the wrapped code.

Macros and dispatch

Macros, just like Julia functions, are generic. This means they can also have multiple method definitions, thanks to

multiple dispatch:

julia> macro m end

@m (macro with @ methods)

julia> macro m(args...)
println("$(length(args)) arguments")
end

@m (macro with 1 method)

julia> macro m(x,y)

println("Two arguments™)
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end

@n (macro with 2 methods)

julia> @m "asd"

1 arguments

julia> @m 1 2

Two arguments

However one should keep in mind, that macro dispatch is based on the types of AST that are handed to the macro,

not the types that the AST evaluates to at runtime:

julia> macro m(::Int)
println("An Integer")
end

@m (macro with 3 methods)

julia> @m 2

An Integer

julia> x = 2

2

julia> @m x

1 arguments

18.4 Code Generation

When a significant amount of repetitive boilerplate code is required, it is common to generate it programmatically
to avoid redundancy. In most languages, this requires an extra build step, and a separate program to generate the
repetitive code. In Julia, expression interpolation and eval allow such code generation to take place in the normal

course of program execution. For example, consider the following custom type

struct MyNumber
x::Float64
end

# output

for which we want to add a number of methods to. We can do this programmatically in the following loop:
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for op = (:sin, :cos, :tan, :log, :exp)
eval(quote
Base.$op(a: :MyNumber) = MyNumber($op(a.x))
end)

end

# output

and we can now use those functions with our custom type:

julia> x = MyNumber(m)

MyNumber(3.141592653589793)

julia> sin(x)

MyNumber(1.2246467991473532e-16)

julia> cos(x)

MyNumber(-1.0)
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In this manner, Julia acts as its own preprocessor, and allows code generation from inside the language. The above

code could be written slightly more tersely using the : prefix quoting form:

for op = (:sin, :cos, :tan, :log, :exp)
eval(:(Base.%op(a: :MyNumber) = MyNumber($op(a.x))))

end

This sort of in-language code generation, however, using the eval(quote(

comes with a macro to abbreviate this pattern:

for op = (:sin, :cos, :tan, :log, :exp)
@eval Base.$op(a::MyNumber) = MyNumber($op(a.x))

end

...)) pattern, is common enough that Julia

The @eval macro rewrites this call to be precisely equivalent to the above longer versions. For longer blocks of

generated code, the expression argument given to @eval can be a block:

@eval begin
# multiple lines

end


https://en.wikipedia.org/wiki/Preprocessor
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18,5 Non-Standard String Literals

Recall from Strings that string literals prefixed by an identifier are called non-standard string literals, and can have

different semantics than un-prefixed string literals. For example:

o r"Ms*(?:#1$)" produces a regular expression object rather than a string

+ b"DATA\xff\u2200" is a byte array literal for [68,65,84,65,255,226,136,128].

Perhaps surprisingly, these behaviors are not hard-coded into the Julia parser or compiler. Instead, they are cus-
tom behaviors provided by a general mechanism that anyone can use: prefixed string literals are parsed as calls to

specially-named macros. For example, the regular expression macro is just the following:

macro r_str(p)

Regex(p)

end

That's all. This macro says that the literal contents of the string literal r"~\s*(?:#/$)" should be passed to the @r_str
macro and the result of that expansion should be placed in the syntax tree where the string literal occurs. In other

words, the expression r"~\s*(?:#}$)" is equivalent to placing the following object directly into the syntax tree:

Regex("M\\s*(2:#1\$)")

Not only is the string literal form shorter and far more convenient, but it is also more efficient: since the regular
expression is compiled and the Regex object is actually created when the code is compiled, the compilation occurs

only once, rather than every time the code is executed. Consider if the regular expression occurs in a loop:

for line = lines
m = match(r""\s=(7:#/$)", line)
if m === nothing
# non-comment
else
# comment
end

end

Since the regular expression r"~\s*(?:#]$)" is compiled and inserted into the syntax tree when this code is parsed,
the expression is only compiled once instead of each time the loop is executed. In order to accomplish this without

macros, one would have to write this loop like this:
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re = Regex(""\\s*(?:#1\$)")
for line = lines
m = match(re, line)
if m === nothing
# non-comment
else
# comment
end

end

Moreover, if the compiler could not determine that the regex object was constant over all loops, certain optimizations
might not be possible, making this version still less efficient than the more convenient literal form above. Of course,
there are still situations where the non-literal form is more convenient: if one needs to interpolate a variable into
the regular expression, one must take this more verbose approach; in cases where the regular expression pattern itself
is dynamic, potentially changing upon each loop iteration, a new regular expression object must be constructed on
each iteration. In the vast majority of use cases, however, regular expressions are not constructed based on run-time

data. In this majority of cases, the ability to write reqular expressions as compile-time values is invaluable.

Like non-standard string literals, non-standard command literals exist using a prefixed variant of the command
literal syntax. The command literal custom™ literal® is parsed as @custom_cmd "literal". Julia itself does not contain
any non-standard command literals, but packages can make use of this syntax. Aside from the different syntax and
the _cmd suffix instead of the _str suffix, non-standard command literals behave exactly like non-standard string

literals.

In the event that two modules provide non-standard string or command literals with the same name, it is possible to
qualify the string or command literal with a module name. For instance, if both Foo and Bar provide non-standard

string literal @x_str, then one can write Foo.x"literal" or Bar.x"literal" to disambiguate between the two.

The mechanism for user-defined string literals is deeply, profoundly powerful. Not only are Julia's non-standard
literals implemented using it, but also the command literal syntax (“echo "Hello, $person"”) is implemented with

the following innocuous-looking macro:

macro cmd(str)
:(cmd_gen($(shell_parse(str)[1])))

end

Of course, a large amount of complexity is hidden in the functions used in this macro definition, but they are just
functions, written entirely in Julia. You can read their source and see precisely what they do — and all they do is

construct expression objects to be inserted into your program's syntax tree.
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18.6 Generated functions

A very special macro is @generated, which allows you to define so-called generated functions. These have the capa-
bility to generate specialized code depending on the types of their arguments with more flexibility and/or less code
than what can be achieved with multiple dispatch. While macros work with expressions at parse time and cannot
access the types of their inputs, a generated function gets expanded at a time when the types of the arguments are

known, but the function is not yet compiled.

Instead of performing some calculation or action, a generated function declaration returns a quoted expression which
then forms the body for the method corresponding to the types of the arguments. When a generated function is called,
the expression it returns is compiled and then run. To make this efficient, the result is usually cached. And to make
this inferable, only a limited subset of the language is usable. Thus, generated functions provide a flexible way to

move work from run time to compile time, at the expense of greater restrictions on allowed constructs.

When defining generated functions, there are five main differences to ordinary functions:

1. Youannotate the function declaration with the @generated macro. This adds some information to the AST that

lets the compiler know that this is a generated function.
2. In the body of the generated function you only have access to the types of the arguments — not their values.

3. Instead of calculating something or performing some action, you return a quoted expression which, when

evaluated, does what you want.

4. Generated functions are only permitted to call functions that were defined before the definition of the gener-
ated function. (Failure to follow this my result on getting MethodErrors referring to functions from a future

world-age.)

5. Generated functions must not mutate or observe any non-constant global state (including, for example, 10,
locks, non-local dictionaries, or using hasmethod). This means they can only read global constants, and cannot
have any side effects. In other words, they must be completely pure. Due to an implementation limitation, this

also means that they currently cannot define a closure or generator.

It's easiest to illustrate this with an example. We can declare a generated function foo as

julia> @generated function foo(x)
Core.println(x)
return :(x * x)

end

foo (generic function with 1 method)
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Note that the body returns a quoted expression, namely : (x * x), rather than just the value of x * x.
From the caller's perspective, this is identical to a regular function; in fact, you don't have to know whether you're

calling a regular or generated function. Let's see how foo behaves:

julia> x = foo(2); # note: output is from println() statement in the body

Int64

julia> x # now we print x

4

julia> y = foo("bar");

String

julia> y

"barbar"

So, we see that in the body of the generated function, x is the type of the passed argument, and the value returned by
the generated function, is the result of evaluating the quoted expression we returned from the definition, now with

the value of x.

What happens if we evaluate foo again with a type that we have already used?

julia> foo(4)

16

Note that there is no printout of Int64. We can see that the body of the generated function was only executed once
here, for the specific set of argument types, and the result was cached. After that, for this example, the expression
returned from the generated function on the first invocation was re-used as the method body. However, the actual
caching behavior is an implementation-defined performance optimization, so it is invalid to depend too closely on

this behavior.

The number of times a generated function is generated might be only once, but it might also be more often, or appear
to not happen at all. As a consequence, you should never write a generated function with side effects - when, and
how often, the side effects occur is undefined. (This is true for macros too - and just like for macros, the use of eval
in a generated function is a sign that you're doing something the wrong way.) However, unlike macros, the runtime

system cannot correctly handle a call to eval, so it is disallowed.

[t is also important to see how @generated functions interact with method redefinition. Following the principle that

a correct @generated function must not observe any mutable state or cause any mutation of global state, we see the
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following behavior. Observe that the generated function cannot call any method that was not defined prior to the

definition of the generated function itself.

Initially f(x) has one definition

julia> f(x) = "original definition";

Define other operations that use f(x):

julia> g(x) = f(x);

julia> @generated genl(x) = f(x);

julia> @generated gen2(x) = :(f(x));

We now add some new definitions for f(x):

julia> f(x::Int) = "definition for Int";

julia> f(x::Type{Int}) = "definition for Type{Int}";

and compare how these results differ:

julia> f(1)

"definition for Int"

julia> g(1)

"definition for Int"

julia> genl(1)

"original definition"

julia> gen2(1)

"definition for Int"

Each method of a generated function has its own view of defined functions:
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julia> @generated genl(x::Real) = f(x);

julia> gen1(1)

"definition for Type{Int}"

The example generated function foo above did not do anything a normal function foo(x) = x * x could not do (except
printing the type on the first invocation, and incurring higher overhead). However, the power of a generated function

lies in its ability to compute different quoted expressions depending on the types passed to it:

julia> @generated function bar(x)
if x <: Integer
return :(x * 2)
else
return :(x)
end
end

bar (generic function with 1 method)

julia> bar(4)

16

julia> bar("baz")

"

"baz

(although of course this contrived example would be more easily implemented using multiple dispatch...)

Abusing this will corrupt the runtime system and cause undefined behavior:

julia> @generated function baz(x)
if rand() < .9
return :(x"2)
else
return :("boo!")
end

end

baz (generic function with 1 method)

Since the body of the generated function is non-deterministic, its behavior, and the behavior of all subsequent code

is undefined.
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Don't copy these examples!

These examples are hopefully helpful to illustrate how generated functions work, both in the definition end and at

the call site; however, don't copy them, for the following reasons:

the foo function has side-effects (the call to Core.println), and it is undefined exactly when, how often or

how many times these side-effects will occur

the bar function solves a problem that is better solved with multiple dispatch - defining bar(x) = x and

bar(x::Integer) = x ~ 2 will do the same thing, but it is both simpler and faster.

the baz function is pathological

Note that the set of operations that should not be attempted in a generated function is unbounded, and the runtime

system can currently only detect a subset of the invalid operations. There are many other operations that will simply

corrupt the runtime system without notification, usually in subtle ways not obviously connected to the bad definition.

Because the function generator is run during inference, it must respect all of the limitations of that code.

Some operations that should not be attempted include:

1.

Caching of native pointers.

Interacting with the contents or methods of Core.Compiler in any way.

Observing any mutable state.

— Inference on the generated function may be run at any time, including while your code is attempting to

observe or mutate this state.

Taking any locks: C code you call out to may use locks internally, (for example, it is not problematic to call
malloc, even though most implementations require locks internally) but don't attempt to hold or acquire any

while executing Julia code.

Calling any function that is defined after the body of the generated function. This condition is relaxed for

incrementally-loaded precompiled modules to allow calling any function in the module.

Alright, now that we have a better understanding of how generated functions work, let's use them to build some more

advanced (and valid) functionality...
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An advanced example

Julia's base library has a an internal sub2ind function to calculate a linear index into an n-dimensional array, based
on a set of n multilinear indices - in other words, to calculate the index i that can be used to index into an array A

using A[i], instead of A[x,Y,z,...]. One possible implementation is the following:

julia> function sub2ind_loop(dims::NTuple{N}, I::Integer...) where N
ind = I[N] - 1
for i = N-1:-1:1
ind = I[i]-1 + dims[i]*ind
end
return ind + 1
end

sub2ind_loop (generic function with 1 method)

julia> sub2ind_loop((3, 5), 1, 2)

4

The same thing can be done using recursion:

julia> sub2ind_rec(dims::Tuple{}) = 1;

julia> sub2ind_rec(dims::Tuple{}, il::Integer, I::Integer...) =

il == 1 ? sub2ind_rec(dims, I...) : throw(BoundsError());

julia> sub2ind_rec(dims::Tuple{Integer, Vararg{Integer}}, il::Integer) = il;

julia> sub2ind_rec(dims::Tuple{Integer, Vararg{Integer}}, il::Integer, I::Integer...) =

il + dims[1] * (sub2ind_rec(Base.tail(dims), I...) - 1);

julia> sub2ind_rec((3, 5), 1, 2)

4

Both these implementations, although different, do essentially the same thing: a runtime loop over the dimensions

of the array, collecting the offset in each dimension into the final index.

However, all the information we need for the loop is embedded in the type information of the arguments. Thus, we can
utilize generated functions to move the iteration to compile-time; in compiler parlance, we use generated functions
to manually unroll the loop. The body becomes almost identical, but instead of calculating the linear index, we build

up an expression that calculates the index:
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julia> @generated function sub2ind_gen(dims::NTuple{N}, I::Integer...) where N
ex = :(I[$N] - 1)
fori=(N- 1):-1:1
ex = :(I[$1] - 1 + dims[$i] * $ex)
end
return :($ex + 1)
end

sub2ind_gen (generic function with 1 method)

julia> sub2ind_gen((3, 5), 1, 2)

4

What code will this generate?

An easy way to find out is to extract the body into another (regular) function:

julia> @generated function sub2ind_gen(dims::NTuple{N}, I::Integer...) where N
return sub2ind_gen_impl(dims, I...)
end

sub2ind_gen (generic function with 1 method)

julia> function sub2ind_gen_impl(dims::Type{T}, I...) where T <: NTuple{N,Any} where N
length(I) == N || return :(error("partial indexing is unsupported"))
ex = (I[$N] - 1)
fori=(N-1):-1:1
ex = :(I[$1i] - 1 + dims[$i] * $ex)
end
return :($ex + 1)
end

sub2ind_gen_impl (generic function with 1 method)

We can now execute sub2ind_gen_impl and examine the expression it returns:

julia> sub2ind_gen_impl(Tuple{Int,Int}, Int, Int)
(((I[1] - 1) + dims[1] * (I[2] - 1)) + 1)

So, the method body that will be used here doesn't include a loop at all - just indexing into the two tuples, multipli-
cation and addition/subtraction. All the looping is performed compile-time, and we avoid looping during execution
entirely. Thus, we only loop once per type, in this case once per N (except in edge cases where the function is generated

more than once - see disclaimer above).
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Optionally-generated functions

Generated functions can achieve high efficiency at run time, but come with a compile time cost: a new function body
must be generated for every combination of concrete argument types. Typically, Julia is able to compile "generic"
versions of functions that will work for any arguments, but with generated functions this is impossible. This means

that programs making heavy use of generated functions might be impossible to statically compile.

To solve this problem, the language provides syntax for writing normal, non-generated alternative implementations

of generated functions. Applied to the sub2ind example above, it would look like this:

function sub2ind_gen(dims::NTuple{N}, I::Integer...) where N
if N != length(I)
throw(ArgumentError("Number of dimensions must match number of indices."))
end
if @generated
ex = :(I[$N] - 1)
fori=(N-1):-1:1
ex = :(I[$i] - 1 + dims[$i] * $ex)
end
return :($ex + 1)
else
ind = I[N] - 1
for i = (N - 1):-1:1
ind = I[i] - 1 + dims[i]*ind
end
return ind + 1
end

end

Internally, this code creates two implementations of the function: a generated one where the first block in if
@generated is used, and a normal one where the else block is used. Inside the then part of the if @generated block,
code has the same semantics as other generated functions: argument names refer to types, and the code should return
an expression. Multiple if @generated blocks may occur, in which case the generated implementation uses all of the

then blocks and the alternate implementation uses all of the else blocks.

Notice that we added an error check to the top of the function. This code will be common to both versions, and is
run-time code in both versions (it will be quoted and returned as an expression from the generated version). That
means that the values and types of local variables are not available at code generation time —- the code-generation

code can only see the types of arguments.
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In this style of definition, the code generation feature is essentially an optional optimization. The compiler will use
it if convenient, but otherwise may choose to use the normal implementation instead. This style is preferred, since
it allows the compiler to make more decisions and compile programs in more ways, and since normal code is more
readable than code-generating code. However, which implementation is used depends on compiler implementation

details, so it is essential for the two implementations to behave identically.
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eltype(A) A 9] 94 ElQ]
length(A) A9 YA TS
ndims(A) A 9] 214
size(A) A9 3V EZ
size(A,n) A 9] n 9] 27]
axes(A) A9 S FstoldlA EX
axes(A,n) A9l 95 QA nxtY ¥WQ|(range)
eachindex(A) | A 9] BE QX|& BIE5t= 82191 UtE Z}(iterator)
stride(A,k) | k 319l Ware] AEBLO|E (2143 94 7H0] A QIEA 7))
strides(A) DE A9 AEZIO|lE EE
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To see the various ways we can pass dimensions to these constructors, consider the following examples:

julia> zeros(Int8, 2, 3)
2x3 Array{Int8,2}:
0 0 0

0 0 0

julia> zeros(Int8, (2, 3))

2x3 Array{Int8,2}:

julia> zeros((2, 3))
2x3 Array{Float64,2}:

0.0 0.0 0.0

0.0 0.0 0.0

Here, (2, 3) is a Tuple.

19.3 Y3 Concatenation)

Bie T 342 ATgato] sk Wit 4

)
£
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ER Bk
Array{T}(undef, 2718} 57| 942 22l Array
dims...)
zeros(T, dims...) S E Z}o] 022 27|38} = Array
ones(T, dims...) S E 7ol 12 27138} = Array
trues(dims...) S E Z}0] true2 7|3} H BitArray
falses(dims...) S E 7}o] false2 2 7|3} = BitArray
reshape(A, dims...) | A S} Y& HOJEIS 71|12 QAT FAto] th2 Y
copy(A) A 9] &2 BAt
deepcopy (A) A9 Z2 EA(ZE dAE AFAXCER AR
sinilar(a, T, ASHSUS Z2(UT, 312, 519 2713 E17] 22 Wi, AP A Erela WAL TH,
dins. ..) SuRer AR Qe MEidolo), 7] B3he AS) Y4BT Aielolct,
reinterpret(T, A) A 9} =5t 0]Z HoJE|E 71X| 1 QA|Tt A EFQIO] T Q1 ulij
rand(T, dims...) Y 5Ystn] Gu1t[0,1) HolM 94 FL EXE 711 1Y Array
randn(T, dims...) =Y 5YotH 22 Jf EXE 717 2 Array
Matrix{T}(I, m, n) 3717t m x n Q1 &9 HF
range(start, starto| A stop7tZ] n 79 Y47t MFZ O 2 vjx]H 17
stop=stop,
length=n)
FiLLI(A, X) WP A2 x 102 97
fill(x, dims...) X O 2 2} Q= Array
3% 47
cat(A...; dims=k) | LU BIGS k 2hLofl w2t Het
vcat(A...) cat(A...; dims=1)9] £
hcat(A...) cat(A...; dims=2)9] £

julia> vcat([1, 2], 3)
3-element Array{Int64,1}:
1

2

3

julia> hcat([1 2], 3)

1x3 Array{Int64,2}:



286 CHAPTER 19. tatg Bl

1 2 3

[A; B; C; ...] vcat

[ABC...] hcat

[AB; CD; ...] | hvcat

hucat & 129 (MO 22O T2) T 24 A(AHOIAR T2) B& Wik off 4|2 YU UL vlLhu:

julia> [[1; 215 [3, 4]1]
4-element Array{Int64,1}:
1

2

3

4

julia> [[1 2] [3 41]
1x4 Array{Int64,2}:

1 2 3 4

julia> [[1 21; [3 4]1]
2x2 Array{Int64,2}:

1 2

julia> [[1 2] [3 411
1x4 Array{Int64,2}:

1 2 3 4

julia> Int8[[1 2] [3 4]1]
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1x4 Array{Int8,2}:

1 2 3 4

19.5 ZHz=z]dlM(Comprehensions)

Fme)AL LS WBH AUHOIAME ZAT YL AT FTRNO 2HS 25j0)A 20| Yol 2ARA L
Sl

= g0y

rlr

A=1[ F(Xx,y,...) for x=rx, y=ry, ... ]

Ol x,y 59 W47} F
able) O A= B 4 YA, FR 1:n &

Zih= NAH B o]

2

)

cheol ol Akl TTolM, B A4 PZ 012, R2Z 0120] 7t5 BRFS AN

julia> x = rand(8)
8-element Array{Float64,1}:
0.843025

0.869052

0.365105

S)

.699456

S

.977653

S

994953

S

.41084

S

.809411

julia> [ 0.25%x[i-1] + 0.5%x[1] + 0.25%x[i+1] for i=2:1length(x)-1 ]
6-element Array{Float64,1}:

0.736559

0.57468

0.685417

0.912429

0.8446

0.656511

ALt fart 2ot BS YA R Yol{H Hufld ool BrdS 2ol €. olE 594,

°
-
oSt 2ol Z2uE DY YL (single precision) 2 29T 4 Qlth:

Float32[ 0.25+x[i-1] + 0.5%x[i] + 0.25*x[i+1] for i=2:length(x)-1 ]
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19.6 A||o]E] EHA] (Generator Expressions)

julia> sum(1/n"2 for n=1:1000)

1.6439345666815615

Q1% B2 oholl 4 ke AUfRIolE] BANS ST Tolls BEE Agat0] 11159 Ql4e} TR

julia> map(tuple, 1/(i+j) for i=1:2, j=1:2, [1:4;])

ERROR: syntax: invalid iteration specification

for Ch2ol ok 2E2 7EY BE BFAL Y92 HNEIDE, of7lo] BEE 271102 M napoll AR Q145 2713

julia> map(tuple, (1/(i+j) for i=1:2, j=1:2), [1 3; 2 4])
2x2 Array{Tuple{Float64,Int64},2}:

(0.5, 1) (0.333333, 3)

(0.333333, 2) (0.25, 4)

Generators are implemented via inner functions. Just like inner functions used elsewhere in the language, variables
from the enclosing scope can be "captured” in the inner function. For example, sum(p[i] - q[i] for i=1:n) captures
the three variables p, g and n from the enclosing scope. Captured variables can present performance challenges; see

performance tips.

Aol 2k H 2|0l A for Z]QIEE of2{H ALETL 2 Fe7H o4l ool ESI=E & 4 Ut

julia> [(i,j) for i=1:3 for j=1:i]
6-element Array{Tuple{Int64,Int64},1}:
(1, D

2,1

2, 2)

G,

3, 2)

3, 3)
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ol2jat A9 At 4 1ol
WHE e if 19SS A8l TEIY ¥ 4 rt,
julia> [(i,j) for i=1:3 for j=1:i if i+j == 4]
2-element Array{Tuple{Int64,Int64},1}:
(2, 2)
3, 1)
19.7 OIEA]
natel vl AS Q1A She UubHQl Pye Tigw Pk
X=A[I1, I.2, ..., I.n]
71N I_k & 2Z2t G4, e vilg, 22 A[Qots T2 A & sholt}. of7|oflE B QIEAE Md=isHs Colon (:),
AL Tt LG 7HY BRAAS MBI a:c 2 a:b:c?} 22 FERQ] W, 12T true S Mt B WdE

gio BE QlElast Azelelel, 2 i W A2 U 3 Siolct, TR 92 B9 K Woln], RE QIElA0] 29l 40

of|& 50, REQAEA 1 kI HIE2tH X9 27]= (length(I_1), length(I_2), ..., length(I_n))7} &3, X9li 1, i 2,
v, In QR =A[I_1[i 1], I_2[i_ 2], ..., I_n[i_n]] Z}S 71RX]A H}.

julia> A = reshape(collect(1:16), (2, 2, 2, 2))
2x2x2x2 Array{Int64,4}:

[+, 5, 1, 1] =
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13 15

14 16

julia> A[1, 2, 1, 1] # all scalar indices

3

julia> A[[1, 21, [11, [1, 21, [1]] # all vector indices
2x1x2x1 Array{Int64,4}:

[:,:, 1, 1] =

julia> A[[1, 21, [11, [1, 2], 1] # a mix of index types
2x1x2 Array{Int64,3}:

[:, :, 1] =

1

2

Note how the size of the resulting array is different in the last two cases.

OtoF1_10] 22t HE 2 vHATH X= 3717} (size(I_1, 1), size(I_1, 2), length(I_2), ..

sjdo] i}, o] kAL st 27tste Aot

Example:

julia> A = reshape(collect(1:16), (2, 2, 2, 2));

julia> A[[1 2; 1 2]]

2x2 Array{Int64,2}:

1 2

1 2

CHAPTER 19. thxrg v

., length(I_n))Ql n+1x}Y
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julia> A[[1 2; 1 2], 1, 2, 1]
2x2 Array{Int64,2}:

5 6

5 6

X9li 1, i2, i3, ..., i {n+1} QX =A[I_1[i 1, i 2], I_2[i 3], ..., I_n[i_{n+1}1]1 32 7RIt} AZ 2} (scalars)2
QAL 2= Xt 2 Zutol| A 2T o § 501, 17 JHA SO W Fo|H A[2, I, 3]9] Zit= 37]7} size(3) Q1 BiE O],

JHIm A40) gk Al2, J[j1, 3]0l

X = getindex(A, I_.1, I.2, ..., I.n)
ofA]:

julia> x = reshape(1:16, 4, 4)

4x4 reshape(::UnitRange{Int64}, 4, 4) with eltype Int64:
15 9 13
2 6 10 14
37 11 15

4 8 12 16

julia> x[2:3, 2:end-1]
2x2 Array{Int64,2}:
6 10

7 11

julia> x[1, [2 3; 4 1]1]
2x2 Array{Int64,2}:

59

13 1

19.8 oY
nzhgl B Adl] g2 thlste dehAQl 292 thadt 2ok

‘A[I_l, I2, ...,In]=X
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071N I_k & 2Zt P4, F4+ v, 22 Aots HE QEA F shiolo). of7]oflE BE A S =6 Colon (1),

ALEAY Pt 149 BELdS HJEot= arc 52 axb: @t 22 FEIQ B9, T2]2L true gHe ABiste 22 WigT

ZIHG

grek QIElA T kE0] BF FoeatH, A9 11, 1.2, ..., I_nofl XI5t ZH2 x| o2 HojH 7ty ZQsitiH A

eltype2L 2 & Bi&tconverto] gojd 4 Qict

gHoF OfH QIEIA T k7t gt 7HE T W QIR E AT F2, SHAXEALLL, 1.2, ..., I_n]S Qe Autet 2 Bk

HjFOo|AY, J8 M7t 22 WEojopgt et} A9l I 1[i 11, I_2[i 2], ..., I_n[i_nJoll =gt gk FF X[1_1, I 2,
, Inle2 goiXA ], g A & wsto] Yojdtt. ARy thl AR The element-wise assignment operator)

=5 MEHE 93] ZA|ofl thet X2 B2 EF|A-broadcastof]l & £E& UTh

A[I1, 1.2, ..., I.n] .=

st

QIS0 A9} DHIZER|Z, 7 X19] DF|St QHAES UERRY] YaiA QA BE QtojA] end 7IYEE AHRE 4 it
OpR|g QIElA L= QIElY H = 7HE ¢HZ2] vig ol 2 7)o et AP, end 719E gl HYUY 2 setindex! 23}
SYsitk:

setindex!(A, X, I_1, I.2, ..., I_n)

of|A]:

julia> x = collect(reshape(1:9, 3, 3))

3x3 Array{Int64,2}:

1 4 7

2 58

3 6 9
julia> x[3, 3] = -
julia> x[1:2, 1:2] = [-1 -4; -2 -5];

julia> x

3x3 Array{Int64,2}:

-1 -4 7
-2 -5 8
3 6 -9

19.9 XYt QA EfY)

2, ..., In]OoIM, Ik 272} QA Az} QIHA0 v, &2 to_indicesE &3l 272t QIEA

I
WS 4 9l 23 3 shfolck
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o
=

o
o

t}:

L Azt g

o

- 20| ohd H2,

ot
ix

~ CartesianIndex{N}. 0}2] Xtgloll ZHUL H40| NEZH FEIIT (I3 AR olehE

|
Q
o
W
Q
2
z
o
my
rlo
oE
10
Q
fo
(@]
>
i)
1o
re
Ap
mn
)
v
i
o

23 7FA9] subsectionS AEH.

3. AzehQIEx0l Widg LR ARIOIRA to_indicesS Ba) 222 ARA0 RS Wk £ 9k 2. 7lEoR
e g Tyt

- B2 <. true A0 = A4S I (RpAR LHE2 ofhE F=R)

Some examples:

julia> A = reshape(collect(1:2:18), (3, 3))

3x3 Array{Int64,2}:

1 7 13
3 9 15
5 11 17

julia> A[4]

7

julia> A[[2, 5, 8]]
3-element Array{Int64,1}:
3
9
15

julia> A[[1 4; 3 8]]
2x2 Array{Int64,2}:

1 7
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julia> A[[]1]

0-element Array{Int64,1}

julia> A[1:2:5]
3-element Array{Int64,1}:
1

5

9

julia> A[2, :]

3-element Array{Int64,1}:
3
9

15

julia> A[:, 3]
3-element Array{Int64,1}:
13

15

17

2l QIEIA (Cartesian indices)

CartesianIndex{N} ZAq|= oj2] A}Y S = Ls}

rr
ox,
P
10
=
I
i}
ot
of
)
_O'I_l,
rr
[>
y
o
rO
o
[>
e
)
m
&
i)

julia> A = reshape(1:32, 4, 4, 2);

julia> A[3, 2, 1]

7

julia> A[CartesianIndex(3, 2, 1)] == A[3, 2, 1] ==7

true
w2 mlojsal 2R, ol o ItdohA EYA| = B2TE; CartesianIndexs T 2] F4E o] X2 F0A]
5 Z3o[t}. SIR|g T}2 FHAo] QldlAolLY, CartesianIndexE Ujoles YH2 219l AgtslH

2 2 9} ool wiEaE FEaR © TF AE thke LnelZa wiEo] B of

pd


https://julialang.org/blog/2016/02/iteration
https://julialang.org/blog/2016/02/iteration

19.9. A|gshs QEA B -

EZohe 27} A2 D82 Uehtol, F¥(pointwise)

CartesianIndex{N}9] v E5} z|Y=ct, o] ZkzZh Naje =T
Q £ 501, 4 ofAlollA H2AE A9 A "H0]2]"S] i AAES

ol s Bl QYo Yehg K5 k. of

che 2ol N2 B 4 Sick

julia> page = A[:,:,1]
4x4 Array{Int64,2}:
15 9 13

2 6 10 14

37 11 15

4 8 12 16

julia> page[[CartesianIndex(1,1),
CartesianIndex(2,2),
CartesianIndex(3,3),
CartesianIndex(4,4)]1]

4-element Array{Int64,1}:

1

% QElag s 024 (A2 R WA "m|0]7]"S 2 &0k B o 3 glo)) B Tl
Uzt -9 Zgsto]  H0]x|9) A4S S S0 228 £E ek
julia> A[CartesianIndex.(axes(A, 1), axes(A, 2)), 1]
4-element Array{Int64,1}:
1
6
11

16

julia> A[CartesianIndex.(axes(A, 1), axes(A, 2)), :]
4x2 Array{Int64,2}:

1 17

6 22

11 27

16 32

n3x
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“CartesianIndex®}™ "CartesianIndex2|” H{E 2 aplo| OA|St QI AZE LIEHNE “end” 7|YEQI S8R ¢onz, °

CartesianIndex” & “CartesianIndexQ|” HIEE E&E £ U= EJAMOME “endE" AtE5HA = QHEILCE.

=21 Ey

B2 HiG S 018 A2 O] trueQl 2| QIHAS MESiT 22 =2] QlHlY, 52 =24 DA E AR QE4Jol=ta
P20, 22 ¥HH BE S AHY2 findall(B)7} 2Este F+ HIHE S A Ynt SLaitt. o]e oRIZIA| =, Nake
F2 HiES 59 YHL2, true 2 YRS UEE CartesianIndex{N}52] BiES T A2 SLsITt =214

A AE, JEA0] I 7|9t QI ASH: BB sy AHH ) 2717t DAISHAY, &2 i 37] Y 2FQ0] B[Sk T 5l
Qe A0]00} gttt B2 BiHS AHESI0] BIZ QIH4] Sh= 20| findallE WA S35t ZBTH d¥HH o2 o 88204,

julia> x = reshape(1:16, 4, 4)

4x4 reshape(::UnitRange{Int64}, 4, 4) with eltype Int64:
15 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> x[[false, true, true, false], :]
2x4 Array{Int64,2}:
2 6 10 14

3 7 11 15

julia> mask = map(ispow2, x)
4x4 Array{Bool,2}:

1 0 0 0

1 0 0 0

0 0 0 0

1101

julia> x[mask]

5-element Array{Int64,1}:
1
2

16
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Number of indices
Cartesian indexing

The ordinary way to index into an N-dimensional array is to use exactly N indices; each index selects the position(s)
in its particular dimension. For example, in the three-dimensional array A = rand(4, 3, 2), A[2, 3, 1] will select
the number in the second row of the third column in the first "page” of the array. This is often referred to as cartesian

indexing.

Linear indexing

When exactly one index i is provided, that index no longer represents a location in a particular dimension of the
array. Instead, it selects the ith element using the column-major iteration order that linearly spans the entire array.
This is known as linear indexing. It essentially treats the array as though it had been reshaped into a one-dimensional

vector with vec.

julia> A =[26; 4 7; 3 1]

3x2 Array{Int64,2}:

julia> A[5]

7

julia> vec(A)[5]

7

Alinear index into the array A can be converted to a CartesianIndex for cartesian indexing with CartesianIndices(A)[i]
(see CartesianIndices), and a set of N cartesian indices can be converted to a linear index with LinearIndices(A)[i_1,

i_2, ..., i_N] (see LinearIndices).

julia> CartesianIndices(A)[5]

CartesianIndex(2, 2)

julia> LinearIndices(A)[2, 2]

5

It's important to note that there's a very large assymmetry in the performance of these conversions. Converting a

linear index to a set of cartesian indices requires dividing and taking the remainder, whereas going the other way is
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just multiplies and adds. In modern processors, integer division can be 10-50 times slower than multiplication. While
some arrays — like Array itself — are implemented using a linear chunk of memory and directly use a linear index
in their implementations, other arrays — like Diagonal — need the full set of cartesian indices to do their lookup (see
IndexStyle to introspect which is which). As such, when iterating over an entire array, it's much better to iterate over
eachindex(A) instead of 1:1length(A). Not only will the former be much faster in cases where A is IndexCartesian, but

it will also support OffsetArrays, too.

Omitted and extra indices

In addition to linear indexing, an N-dimensional array may be indexed with fewer or more than N indices in certain

situations.

Indices may be omitted if the trailing dimensions that are not indexed into are all length one. In other words, trailing
indices can be omitted only if there is only one possible value that those omitted indices could be for an in-bounds
indexing expression. For example, a four-dimensional array with size (3, 4, 2, 1) may be indexed with only three
indices as the dimension that gets skipped (the fourth dimension) has length one. Note that linear indexing takes

precedence over this rule,

julia> A = reshape(1:24, 3, 4, 2, 1)
3x4x2x1 reshape(::UnitRange{Int64}, 3, 4, 2, 1) with eltype Int64:

[:,: 1, 1] =

13 16 19 22
14 17 20 23

15 18 21 24

julia> A[1, 3, 2] # Omits the fourth dimension (length 1)

19

julia> A[1, 3] # Attempts to omit dimensions 3 & 4 (lengths 2 and 1)
ERROR: BoundsError: attempt to access 3x4x2x1 reshape(::UnitRange{Int64}, 3, 4, 2, 1) with eltype Int64 at index [1,

s 3]

julia> A[19] # Linear indexing

19
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When omitting all indices with A[], this semantic provides a simple idiom to retrieve the only element in an array

and simultaneously ensure that there was only one element.

Similarly, more than N indices may be provided if all the indices beyond the dimensionality of the array are 1 (or more

generally are the first and only element of axes(A, d) where d is that particular dimension number). This allows

vectors to be indexed like one-column matrices, for example:

julia> A = [8,6,7]
3-element Array{Int64,1}:
8
6

7

julia> A[2,1]

6

19.10 YHE(Iteration)

for a in A
# 94 az 7} Bt

end

for i in eachindex(A)

ror
[
o

#1 22 A[L] 2 &7t

end

AR LR A= AT} ofzet gro] B QS uff AFESiT). A LR A7 W2 Y QWS APk vigoleld ik
Int E}Q), O282] &S A RE= CartesianIndex EFQlo|ch:

julia> A = rand(4,3);

julia> B = view(A, 1:3, 2:3);

julia> for i in eachindex(B)
@show i
end

i = CartesianIndex(1, 1)
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i = CartesianIndex(2, 1

N

i = CartesianIndex(3, 1)
i = CartesianIndex(1, 2)

i = CartesianIndex(2, 2

~

i = CartesianIndex(3, 2

-

for i = 1:length(A)of B]3l, eachindexs ZE £2Z 0 HYES S 82X 02 UtEs £ QL & |},

19.11 i EA(trait)

ZIAH AbstractArray BHg Folshs 32, g A

»

Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()

o

]33 2 eachindex?t F5E AHE510] MyArrayS YHESHE 2 Sitt. o] EAJS 2SR ¥ oM, 712391 IndexCartesian() S

A}

o

&

st

1912 ejnt MEsHE QMRS

2. O|F Ats AARE — - + % / \
3. H]W @AR}F - == I= = (isapprox), =
HiY =2 v gt Azhete] gotol ook g4 ALtol thall f. (args...) FEHS (o]l sin. (x), min.(x,y)) H ZHE AHES}HO]

=2
43} QAN TIE QNS WIS WEleh & 4 ik 1Y, B2 i Azete) Bl sl A4 AN B A
o
=

2 4 et (22 50AT AN, 2719 ol 2L THE dot call T} Z0] £0h9 shte] 2x2 g3aichs Zolt

ES B ol dilate He Ao 4 9o, ol g EREIHAT Ato A iE (2] s Sy} AZEt0) 290

.(

MNP A HiSo] AL E0], T BiLte] B ZHS Lol T} YAY HZE SiHL A .=} 7S
29 A4 . <gho] Bl goll 48 7ls5it)

E3H maxE a9t bol] YABE broadcast 5H= max. (a,b) 2}, a2l HThZrS = maximum(a) Q] xto]of] 2-9Jst2}. min. (a,b)
€ minimum(a) O] A= DRE7EA]o|Th
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19.13 EB=LijAdy

Yol 2 el ool 2 WY, OE 2719 HjBES YLWR oY AN BRYL 33

=
Wle wElg AT} 2L 712 BASH: Holck
julia> a = rand(2,1); A = rand(2,3);
julia> repeat(a,1,3)+A

2x3 Array{Float64,2}:

1.20813 1.82068 1.25387

1.56851 1.86401 1.67846

2149 2717 AR 9] W2 JH|7E HeiR B8, Julias broadcastE A58t} broadcast= 2714Q1 T 2 2] & AMESHA]

HORA, oI gt e At F F717H 191 Ak Fol T v g sl Aol 2719 LRSS EYsto} Fof
o5 Y2ER HE5He Ptk

julia> broadcast(+, a, A)
2x3 Array{Float64,2}:
1.20813 1.82068 1.25387

1.56851 1.86401 1.67846

julia> b = rand(1,2)
1x2 Array{Float64,2}:

0.867535 0.00457906

julia> broadcast(+, a, b)
2x2 Array{Float64,2}:

1.71056 ©0.847604

1.73659 0.873631

-+ 9 5 22 A2 G broadeast SET (OFHo] MY SIS AATUTIR) SUslt. E3F YAHO2 Bz
A8He broadeast 1= YTt (.= UL ALE30] GYBIOIME HH A
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julia> convert.(Float32, [1, 2])

2-element Array{Float32,1}:
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1.0

2.0

julia> ceil.((UInt8,), [1.2 3.4; 5.6 6.7])
2x2 Array{UInt8,2}:
0x02 0x04

0x06 0x07

julia> string.(1:3, ". ", ["First", "Second", "Third"])
3-element Array{String,1}:

"1. First"

"2. Second"

"3. Third"
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array interface guide in the interfaces chapter.

DenseArray is an abstract subtype of AbstractArray intended to include all arrays where elements are stored con-
tiguously in column-major order (see additional notes in Performance Tips). The Array type is a specific instance of
DenseArray; Vector and Matrix are aliases for the 1-d and 2-d cases. Very few operations are implemented specifically
for Array beyond those that are required for all AbstractArrays; much of the array library is implemented in a generic

manner that allows all custom arrays to behave similarly.

SubArray is a specialization of AbstractArray that performs indexing by sharing memory with the original array
rather than by copying it. A SubArray is created with the view function, which is called the same way as getindex

(with an array and a series of index arguments). The result of view looks the same as the result of getindex, except
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the data is left in place. view stores the input index vectors in a SubArray object, which can later be used to index the
original array indirectly. @views (22 E BHAO|L FE E2 Qo 024 I BEAA Y9 R E array[...] &£8t0|A7}

SubArray R-E ‘3’ JotES & & Tt

BitArrays are space-efficient "packed" boolean arrays, which store one bit per boolean value. They can be used
similarly to Array{Bool} arrays (which store one byte per boolean value), and can be converted to/from the latter via

Array(bitarray) and BitArray(array), respectively.

A "strided" array is stored in memory with elements laid out in regular offsets such that an instance with a supported
isbits element type can be passed to external C and Fortran functions that expect this memory layout. Strided
arrays must define a strides(A) method that returns a tuple of "strides" for each dimension; a provided stride(A,k)
method accesses the kth element within this tuple. Increasing the index of dimension k by 1 should increase the index
iof getindex(A,i) by stride(A,k). If a pointer conversion method Base.unsafe_convert(Ptr{T}, A) is provided, the
memory layout must correspond in the same way to these strides. DenseArray is a very specific example of a strided
array where the elements are arranged contiguously, thus it provides its subtypes with the approporiate definition
of strides. More concrete examples can be found within the interface guide for strided arrays. StridedVector and
StridedMatrix are convenient aliases for many of the builtin array types that are considered strided arrays, allowing
them to dispatch to select specialized implementations that call highly tuned and optimized BLAS and LAPACK

functions using just the pointer and strides.
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julia> a = rand(10, 10)

10x10 Array{Float64,2}:

0.517515 0.0348206 ©.749042 0.0979679 0.75984 0.950481 0.579513
0.901092 0.873479 0.134533 0.0697848 0.0586695 ©0.193254 0.726898
0.976808 0.0901881 0.208332 0.920358 0.288535 0.705941  0.337137
0.657127 0.0317896 ©.772837  0.534457 0.0966037 0.700694 0.675999
0.471777 ©0.144969 0.0718405 0.0827916 0.527233 0.173132  0.694304
0.160872 0.455168 0.489254 0.827851 0.62226 0.0995456 0.946522
0.291857 0.769492 0.68043 0.629461 0.727558 0.910796  0.834837
0.775774 ©0.700731 0.700177 0.0126213 0.00822304 ©0.327502 ©.955181
0.9715 0.64354 0.848441 0.241474 0.591611 0.792573  0.194357
0.646596 ©0.575456 ©0.0995212 0.038517 0.709233 0.477657  0.0507231

julia> b = view(a, 2:2:8,2:2:4)
4x2 view(::Array{Float64,2}, 2:2:8, 2:2:4) with eltype Float64:
0.873479  0.0697848

0.0317896 ©0.534457
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0.455168  0.827851
0.700731 0.0126213

julia> (q, r) = ar(b);

julia> q

4x4 LinearAlgebra.QRCompactWYQ{Float64,Array{Float64,2}}:
-0.722358 0.227524 -0.247784 -0.604181
-0.0262896 -0.575919 -0.804227 0.144377

-0.376419 -0.75072 0.540177 -0.0541979

-0.579497 0.230151 -0.00552346 ©0.781782

julia> r
2x2 Array{Float64,2}:
-1.20921 -0.383393

0.0 -0.910506




Chapter 20

Missing Values

Julia provides support for representing missing values in the statistical sense, that is for situations where no value is
available for a variable in an observation, but a valid value theoretically exists. Missing values are represented via
the missing object, which is the singleton instance of the type Missing. missing is equivalent to NULL in SQL and NA

in R, and behaves like them in most situations.

20.1 Propagation of Missing Values

The behavior of missing values follows one basic rule: missing values propagate automatically when passed to stan-
dard operators and functions, in particular mathematical functions. Uncertainty about the value of one of the
operands induces uncertainty about the result. In practice, this means an operation involving a missing value gen-

erally returns missing

julia> missing + 1

missing

julia> "a" * missing

missing

julia> abs(missing)

missing

As missing is a normal Julia object, this propagation rule only works for functions which have opted in to implement
this behavior. This can be achieved either via a specific method defined for arguments of type Missing, or simply
by accepting arguments of this type, and passing them to functions which propagate them (like standard operators).

Packages should consider whether it makes sense to propagate missing values when defining new functions, and
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define methods appropriately if that is the case. Passing a missing value to a function for which no method accepting

arguments of type Missing is defined throws a MethodError, just like for any other type.

20.2 Equality and Comparison Operators

Standard equality and comparison operators follow the propagation rule presented above: if any of the operands is

missing, the result is missing. Here are a few examples

julia> missing == 1

missing

julia> missing == missing

missing

julia> missing < 1

missing

julia> 2 >= missing

missing

In particular, note that missing == missing returns missing, so == cannot be used to test whether a value is missing.

To test whether x is missing, use ismissing(x).

Special comparison operators isequal and === are exceptions to the propagation rule: they always return a Bool
value, even in the presence of missing values, considering missing as equal to missing and as different from any

other value. They can therefore be used to test whether a value is missing

julia> missing === 1

false

julia> isequal(missing, 1)

false

julia> missing === missing

true

julia> isequal(missing, missing)

true
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The isless operator is another exception: missing is considered as greater than any other value. This operator is

used by sort, which therefore places missing values after all other values.

julia> isless(1, missing)

true

julia> isless(missing, Inf)

false

julia> isless(missing, missing)

false

20.3 Logical operators

Logical (or boolean) operators |, & and xor are another special case, as they only propagate missing values when it
is logically required. For these operators, whether or not the result is uncertain depends on the particular operation,
following the well-established rules of three-valued logic which are also implemented by NULL in SQL and NA in R.
This abstract definition actually corresponds to a relatively natural behavior which is best explained via concrete

examples.
Let us illustrate this principle with the logical "or" operator |. Following the rules of boolean logic, if one of the

operands is true, the value of the other operand does not have an influence on the result, which will always be true

julia> true | true

true

julia> true | false

true

julia> false | true

true

Based on this observation, we can conclude that if one of the operands is true and the other missing, we know that
the result is true in spite of the uncertainty about the actual value of one of the operands. If we had been able to
observe the actual value of the second operand, it could only be true or false, and in both cases the result would be

true. Therefore, in this particular case, missingness does not propagate

julia> true | missing

true


https://en.wikipedia.org/wiki/Three-valued_logic
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julia> missing | true

true

On the contrary, if one of the operands is false, the result could be either true or false depending on the value of

the other operand. Therefore, if that operand is missing, the result has to be missing too

julia> false | true

true

julia> true | false

true

julia> false | false

false

julia> false | missing

missing

julia> missing | false

missing

The behavior of the logical "and" operator & is similar to that of the | operator, with the difference that missingness

does not propagate when one of the operands is false. For example, when that is the case of the first operand

julia> false & false

false

julia> false & true

false

julia> false & missing

false

On the other hand, missingness propagates when one of the operands is true, for example the first one

julia> true & true

true
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julia> true & false

false

julia> true & missing

missing

Finally, the "exclusive or" logical operator xor always propagates missing values, since both operands always have
an effect on the result. Also note that the negation operator ! returns missing when the operand is missing just like

other unary operators.

20.4 Control Flow and Short-Circuiting Operators

Control flow operators including if, while and the ternary operator x ? y : z do not allow for missing values. This
is because of the uncertainty about whether the actual value would be true or false if we could observe it, which
implies that we do not know how the program should behave. A TypeError is thrown as soon as a missing value is

encountered in this context

julia> if missing
println(“here")
end

ERROR: TypeError: non-boolean (Missing) used in boolean context

For the same reason, contrary to logical operators presented above, the short-circuiting boolean operators && and | |
do not allow for missing values in situations where the value of the operand determines whether the next operand is

evaluated or not. For example

julia> missing || false

ERROR: TypeError: non-boolean (Missing) used in boolean context

julia> missing && false

ERROR: TypeError: non-boolean (Missing) used in boolean context

julia> true && missing && false

ERROR: TypeError: non-boolean (Missing) used in boolean context

On the other hand, no error is thrown when the result can be determined without the missing values. This is the case

when the code short-circuits before evaluating the missing operand, and when the missing operand is the last one
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julia> true && missing

missing

julia> false && missing

false

20.5 Arrays With Missing Values

Arrays containing missing values can be created like other arrays

julia> [1, missing]
2-element Array{Union{Missing, Int64},1}:
1

missing

As this example shows, the element type of such arrays is Union{Missing, T}, with T the type of the non-missing
values. This simply reflects the fact that array entries can be either of type T (here, Int64) or of type Missing. This
kind of array uses an efficient memory storage equivalent to an Array{T} holding the actual values combined with

an Array{UInt8} indicating the type of the entry (i.e. whether it is Missing or T).

Arrays allowing for missing values can be constructed with the standard syntax. Use Array{Union{Missing, T}}(missing,

dims) to create arrays filled with missing values:

julia> Array{Union{Missing, String}}(missing, 2, 3)
2x3 Array{Union{Missing, String},2}:
missing missing missing

missing missing missing

An array allowing for missing values but which does not contain any such value can be converted back to an array
which does not allow for missing values using convert. If the array contains missing values, a MethodError is thrown

during conversion

julia> x = Union{Missing, String}["a", "b"]
2-element Array{Union{Missing, String},1}:
"

“p

julia> convert(Array{String}, x)

2-element Array{String,1}:
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julia> y = Union{Missing, String}[missing, "b"]
2-element Array{Union{Missing, String},1}:
missing

"

julia> convert(Array{String}, y)

ERROR: MethodError: Cannot “convert™ an object of type Missing to an object of type String

20.6 Skipping Missing Values

Since missing values propagate with standard mathematical operators, reduction functions return missing when

called on arrays which contain missing values

julia> sum([1, missing])

missing

In this situation, use the skipmissing function to skip missing values

julia> sum(skipmissing([1, missing]))

1

This convenience function returns an iterator which filters out missing values efficiently. It can therefore be used

with any function which supports iterators

julia> x = skipmissing([3, missing, 2, 1])

Base.SkipMissing{Array{Union{Missing, Int64},1}}(Union{Missing, Int64}[3, missing, 2, 1])

julia> maximum(x)

3

julia> mean(x)

2.0

julia> mapreduce(sqrt, +, x)

4.146264369941973
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Objects created by calling skipmissing on an array can be indexed using indices from the parent array. Indices
corresponding to missing values are not valid for these objects and an error is thrown when trying to use them (they

are also skipped by keys and eachindex)

julia> x[1]
3

julia> x[2]
ERROR: MissingException: the value at index (2,) is missing

[...]

This allows functions which operate on indices to work in combination with skipmissing. This is notably the case
for search and find functions, which return indices valid for the object returned by skipmissing which are also the

indices of the matching entries in the parent array

julia> findall(==(1), x)
1-element Array{Int64,1}:

4

julia> findfirst(!iszero, x)

1

julia> argmax(x)

1

Use collect to extract non-missing values and store them in an array

julia> collect(x)
3-element Array{Int64,1}:
3
2

1

20.7 Logical Operations on Arrays

The three-valued logic described above for logical operators is also used by logical functions applied to arrays. Thus,
array equality tests using the == operator return missing whenever the result cannot be determined without knowing
the actual value of the missing entry. In practice, this means that missing is returned if all non-missing values of

the compared arrays are equal, but one or both arrays contain missing values (possibly at different positions)
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julia> [1, missing] == [2, missing]

false

julia> [1, missing] == [1, missing]
missing

julia> [1, 2, missing] == [1, missing, 2]
missing

As for single values, use isequal to treat missing values as equal to other missing values but different from non-

missing values

julia> isequal([1, missing], [1, missing])

true

julia> isequal([1, 2, missing], [1, missing, 2])

false

Functions any and all also follow the rules of three-valued logic, returning missing when the result cannot be

determined

julia> all([true, missing])

missing

julia> all([false, missing])

false

julia> any([true, missing])

true

julia> any([false, missing])

missing
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Networking and Streams

Julia provides a rich interface to deal with streaming /O objects such as terminals, pipes and TCP sockets. This
interface, though asynchronous at the system level, is presented in a synchronous manner to the programmer and it
is usually unnecessary to think about the underlying asynchronous operation. This is achieved by making heavy use

of Julia cooperative threading (coroutine) functionality.

21.1 Basic Stream I/O

All Julia streams expose at least a read and a write method, taking the stream as their first argument, e.g.:

julia> write(stdout, "Hello World"); # suppress return value 11 with ;
Hello World

julia> read(stdin, Char)

"\n": ASCII/Unicode U+000a (category Cc: Other, control)

Note that write returns 11, the number of bytes (in "Hello World") written to stdout, but this return value is sup-

pressed with the ;.

Here Enter was pressed again so that Julia would read the newline. Now, as you can see from this example, write

takes the data to write as its second argument, while read takes the type of the data to be read as the second argument.
For example, to read a simple byte array, we could do:

julia> x = zeros(UInt8, 4)

4-element Array{UInt8,1}:

0x00

0x00

315
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0x00

0x00

julia> read!(stdin, x)
abcd
4-element Array{UInt8,1}:
0x61
0x62
0x63

0x64

However, since this is slightly cumbersome, there are several convenience methods provided. For example, we could

have written the above as:

julia> read(stdin, 4)
abcd
4-element Array{UInt8,1}:
0x61
0x62
0x63

0x64

or if we had wanted to read the entire line instead:

julia> readline(stdin)
abcd
"abcd"

Note that depending on your terminal settings, your TTY may be line buffered and might thus require an additional

enter before the data is sent to Julia.

To read every line from stdin you can use eachline:

for line in eachline(stdin)
print("Found $line™)

end

or read if you wanted to read by character instead:
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while !eof(stdin)
x = read(stdin, Char)
println("Found: $x")

end

21.2 TextI/O

Note that the write method mentioned above operates on binary streams. In particular, values do not get converted

to any canonical text representation but are written out as is:

julia> write(stdout, 0x61); # suppress return value 1 with ;

a

Note that a is written to stdout by the write function and that the returned value is 1 (since 0x61 is one byte).

For text I/0, use the print or show methods, depending on your needs (see the documentation for these two methods

for a detailed discussion of the difference between them):

julia> print(stdout, 0x61)

97

See Custom pretty-printing for more information on how to implement display methods for custom types.

21.3 10 Output Contextual Properties

Sometimes 10 output can benefit from the ability to pass contextual information into show methods. The I0Context
object provides this framework for associating arbitrary metadata with an 10 object. For example, :compact => true
adds a hinting parameter to the 10 object that the invoked show method should print a shorter output (if applicable).

See the I0Context documentation for a list of common properties.

21.4 Working with Files

Like many other environments, Julia has an open function, which takes a filename and returns an I0Stream object
that you can use to read and write things from the file. For example, if we have a file, hello. txt, whose contents are

Hello, World!:

julia> f = open("hello.txt")

I0Stream(<file hello.txt>)
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julia> readlines(f)
1-element Array{String,1}:

"Hello, World!"

If you want to write to a file, you can open it with the write ("w") flag:

julia> f = open("hello.txt","w")

I0Stream(<file hello.txt>)

julia> write(f,"Hello again.")

12

If you examine the contents of hello.txt at this point, you will notice that it is empty; nothing has actually been

written to disk yet. This is because the I0Stream must be closed before the write is actually flushed to disk:

julia> close(f)

Examining hello.txt again will show its contents have been changed.

Opening a file, doing something to its contents, and closing it again is a very common pattern. To make this easier,
there exists another invocation of open which takes a function as its first argument and filename as its second, opens

the file, calls the function with the file as an argument, and then closes it again. For example, given a function:

function read_and_capitalize(f::I0Stream)
return uppercase(read(f, String))

end

You can call:

julia> open(read_and_capitalize, "hello.txt")

"HELLO AGAIN."

to open hello. txt, call read_and_capitalize on it, close hello.txt and return the capitalized contents.

To avoid even having to define a named function, you can use the do syntax, which creates an anonymous function

on the fly:
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julia> open("hello.txt") do f
uppercase(read(f, String))
end

"HELLO AGAIN."

21.5 A simple TCP example

Let's jump right in with a simple example involving TCP sockets. This functionality is in a standard library package

called Sockets. Let's first create a simple server:

julia> using Sockets

julia> @async begin
server = listen(2000)
while true
sock = accept(server)
println("Hello World\n")
end

end

Task (runnable) @0x00007fd31dcllaed

To those familiar with the Unix socket API, the method names will feel familiar, though their usage is somewhat
simpler than the raw Unix socket API. The first call to listen will create a server waiting for incoming connections

on the specified port (2000) in this case. The same function may also be used to create various other kinds of servers:

julia> listen(2000) # Listens on localhost:2000 (IPv4)

Sockets.TCPServer(active)

julia> listen(ip"127.0.0.1",2000) # Equivalent to the first

Sockets.TCPServer(active)

julia> listen(ip"::1",2000) # Listens on localhost:2000 (IPv6)

Sockets.TCPServer(active)

julia> listen(IPv4(0),2001) # Listens on port 2001 on all IPv4 interfaces

Sockets.TCPServer(active)

julia> listen(IPv6(0),2001) # Listens on port 2001 on all IPv6 interfaces

Sockets.TCPServer(active)
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julia> listen("testsocket") # Listens on a UNIX domain socket

Sockets.PipeServer(active)

julia> listen("\\\\.\\pipe\\testsocket") # Listens on a Windows named pipe

Sockets.PipeServer(active)

Note that the return type of the last invocation is different. This is because this server does not listen on TCP, but
rather on a named pipe (Windows) or UNIX domain socket. Also note that Windows named pipe format has to be
a specific pattern such that the name prefix (\\.\pipe\) uniquely identifies the file type. The difference between
TCP and named pipes or UNIX domain sockets is subtle and has to do with the accept and connect methods. The
accept method retrieves a connection to the client that is connecting on the server we just created, while the connect
function connects to a server using the specified method. The connect function takes the same arguments as listen,
so, assuming the environment (i.e. host, cwd, etc.) is the same you should be able to pass the same arguments to

connect as you did to listen to establish the connection. So let's try that out (after having created the server above):

julia> connect(2000)

TCPSocket(open, @ bytes waiting)

julia> Hello World

As expected we saw "Hello World" printed. So, let's actually analyze what happened behind the scenes. When we
called connect, we connect to the server we had just created. Meanwhile, the accept function returns a server-side

connection to the newly created socket and prints "Hello World" to indicate that the connection was successful.

A great strength of Julia is that since the API is exposed synchronously even though the I/0 is actually happening
asynchronously, we didn't have to worry about callbacks or even making sure that the server gets to run. When
we called connect the current task waited for the connection to be established and only continued executing after
that was done. In this pause, the server task resumed execution (because a connection request was now available),
accepted the connection, printed the message and waited for the next client. Reading and writing works in the same

way. To see this, consider the following simple echo server:

julia> @async begin
server = listen(2001)
while true
sock = accept(server)
@async while isopen(sock)

write(sock, readline(sock, keep=true))
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end
end
end

Task (runnable) @0x00007fd31dc12e60

julia> clientside = connect(2001)

TCPSocket (RawFD(28) open, @ bytes waiting)

julia> @async while isopen(clientside)
write(stdout, readline(clientside, keep=true))
end

Task (runnable) @0x00007fd31dc11870

julia> println(clientside,"Hello World from the Echo Server")

Hello World from the Echo Server

As with other streams, use close to disconnect the socket:

julia> close(clientside)

21.6 Resolving IP Addresses

321

One of the connect methods that does not follow the listen methods is connect(host::String,port), which will

attempt to connect to the host given by the host parameter on the port given by the port parameter. It allows you to

do things like:

julia> connect("google.com"”, 80)

TCPSocket(RawFD(30) open, @ bytes waiting)

At the base of this functionality is getaddrinfo, which will do the appropriate address resolution:

julia> getaddrinfo("google.com™)

ip"74.125.226.225"
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Parallel Computing

For newcomers to multi-threading and parallel computing it can be useful to first appreciate the different levels of

parallelism offered by Julia. We can divide them in three main categories :

1. Julia Coroutines (Green Threading)
2. Multi-Threading

3. Multi-Core or Distributed Processing

We will first consider Julia Tasks (aka Coroutines) and other modules that rely on the Julia runtime library, that
allow us to suspend and resume computations with full control of inter-Tasks communication without having to
manually interface with the operating system's scheduler. Julia also supports communication between Tasks through
operations like wait and fetch. Communication and data synchronization is managed through Channels, which are

the conduits that provide inter-Tasks communication.

Julia also supports experimental multi-threading, where execution is forked and an anonymous function is run across
all threads. Known as the fork-join approach, parallel threads execute independently, and must ultimately be joined
in Julia's main thread to allow serial execution to continue. Multi-threading is supported using the Base.Threads
module that is still considered experimental, as Julia is not yet fully thread-safe. In particular segfaults seem to
occur during I/O operations and task switching. As an up-to-date reference, keep an eye on the issue tracker. Multi-
Threading should only be used if you take into consideration global variables, locks and atomics, all of which are

explained later.

In the end we will present Julia's approach to distributed and parallel computing. With scientific computing in mind,
Julia natively implements interfaces to distribute a process across multiple cores or machines. Also we will mention

useful external packages for distributed programming like MPI.j1 and DistributedArrays.jl.
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Coroutines

Julia's parallel programming platform uses Tasks (aka Coroutines) to switch among multiple computations. To
express an order of execution between lightweight threads communication primitives are necessary. Julia offers
Channel(func::Function, ctype=Any, csize=@, taskref=nothing) that creates a new task from func, binds it to a
new channel of type ctype and size csize and schedule the task. Channels can serve as a way to communicate be-
tween tasks, as Channel{T}(sz::Int) creates a buffered channel of type T and size sz. Whenever code performs a
communication operation like fetch or wait, the current task is suspended and a scheduler picks another task to run.

A task is restarted when the event it is waiting for completes.

For many problems, it is not necessary to think about tasks directly. However, they can be used to wait for multiple
events at the same time, which provides for dynamic scheduling. In dynamic scheduling, a program decides what to
compute or where to compute it based on when other jobs finish. This is needed for unpredictable or unbalanced

workloads, where we want to assign more work to processes only when they finish their current tasks.

23.1 Channels

The section on Tasks in #|0] S = discussed the execution of multiple functions in a co-operative manner. Channels

can be quite useful to pass data between running tasks, particularly those involving I/O operations.

Examples of operations involving I/O include reading/writing to files, accessing web services, executing external
programs, etc. In all these cases, overall execution time can be improved if other tasks can be run while a file is being

read, or while waiting for an external service/program to complete.

A channel can be visualized as a pipe, i.e., it has a write end and a read end :

« Multiple writers in different tasks can write to the same channel concurrently via put! calls.
« Multiple readers in different tasks can read data concurrently via take! calls.
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» As an example:

# Given Channels cl and c2,
¢l = Channel(32)

c2 = Channel(32)

# and a function “foo™ which reads items from cl, processes the item read
# and writes a result to c2,
function foo()
while true
data = take!(cl)
[...] # process data
put!(c2, result) # write out result
end

end

# we can schedule “n° instances of “foo™ to be active concurrently.
for _ in 1:n
@async foo()

end

+ Channels are created via the Channel{T}(sz) constructor. The channel will only hold objects of type T. If the
type is not specified, the channel can hold objects of any type. sz refers to the maximum number of elements
that can be held in the channel at any time. For example, Channel(32) creates a channel that can hold a

maximum of 32 objects of any type. A Channel{MyType}(64) can hold up to 64 objects of MyType at any time.
« If a Channel is empty, readers (on a take! call) will block until data is available.
« If a Channel is full, writers (on a put! call) will block until space becomes available.
« isready tests for the presence of any object in the channel, while wait waits for an object to become available.

« A Channel is in an open state initially. This means that it can be read from and written to freely via take! and

put! calls. close closes a Channel. On a closed Channel, put! will fail. For example:

julia> ¢ = Channel(2);

julia> put!(c, 1) # “put!” on an open channel succeeds

1

julia> close(c);
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julia> put!(c, 2) # “put!” on a closed channel throws an exception.
ERROR: InvalidStateException(“"Channel is closed.",:closed)

Stacktrace:

[...]

+ take! and fetch (which retrieves but does not remove the value) on a closed channel successfully return any

existing values until it is emptied. Continuing the above example:

julia> fetch(c) # Any number of ~fetch™ calls succeed.

1

julia> fetch(c)
1

julia> take!(c) # The first “take!  removes the value.

1

julia> take!(c) # No more data available on a closed channel.
ERROR: InvalidStateException("Channel is closed.",:closed)
Stacktrace:

[...]

A Channel can be used as an iterable object in a for loop, in which case the loop runs as long as the Channel has data
or is open. The loop variable takes on all values added to the Channel. The for loop is terminated once the Channel is

closed and emptied.

For example, the following would cause the for loop to wait for more data:

julia> ¢ = Channel{Int}(10);

julia> foreach(i-»>put!(c, i), 1:3) # add a few entries

julia> data = [i for i in c]

while this will return after reading all data:

julia> ¢ = Channel{Int}(10);

julia> foreach(i-»>put!(c, i), 1:3); # add a few entries
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julia> close(c); # ~for® loops can exit

julia> data = [i for i in c]
3-element Array{Int64,1}:

1

2

3

Consider a simple example using channels for inter-task communication. We start 4 tasks to process data from a
single jobs channel. Jobs, identified by an id (job_id), are written to the channel. Each task in this simulation reads
a job_id, waits for a random amount of time and writes back a tuple of job_id and the simulated time to the results

channel. Finally all the results are printed out.

julia> const jobs = Channel{Int}(32);

julia> const results = Channel{Tuple}(32);

julia> function do_work()
for job_id in jobs
exec_time = rand()
sleep(exec_time) # simulates elapsed time doing actual work
# typically performed externally.
put!(results, (job_id, exec_time))
end

end;

julia> function make_jobs(n)
for i in 1:n
put!(jobs, i)
end

end;

julia> n = 12;

julia> @async make_jobs(n); # feed the jobs channel with "n" jobs
julia> for i in 1:4 # start 4 tasks to process requests in parallel
@async do_work()

end
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julia> @elapsed while n > @ # print out results

N

w

s

~

N

w

e}

6

8

10 finished in 0.64 seconds

end
finished
finished
finished
finished
finished
finished
finished

finished

finished in 0.

job_id, exec_time = take!(results)
println("$job_id finished in $(round(exec_time; digits=2)) seconds")

global n=n -1

CHANNELS

in 0.22 seconds

in
in
in
in
in
in

in

0.

0.

.45 seconds
.5 seconds
.14 seconds
.78 seconds

.9 seconds

36 seconds

87 seconds

79 seconds

12 finished in 0.5 seconds

11 finished in 0.97 seconds

0.029772311
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The current version of Julia multiplexes all tasks onto a single OS thread. Thus, while tasks involving I/O operations

benefit from parallel execution, compute bound tasks are effectively executed sequentially on a single OS thread.

Future versions of Julia may support scheduling of tasks on multiple threads, in which case compute bound tasks will

see benefits of parallel execution too.
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Multi-Threading (Experimental)

In addition to tasks Julia forwards natively supports multi-threading. Note that this section is experimental and the

interfaces may change in the future.

24.1 Setup

By default, Julia starts up with a single thread of execution. This can be verified by using the command Threads.nthreads():

julia> Threads.nthreads()

1

The number of threads Julia starts up with is controlled by an environment variable called JULIA_NUM_THREADS. Now,

let's start up Julia with 4 threads:

export JULIA_NUM_THREADS=4

(The above command works on bourne shells on Linux and OSX. Note that if you're using a C shell on these platforms,
you should use the keyword set instead of export. If you're on Windows, start up the command line in the location

of julia.exe and use set instead of export.)

Let's verify there are 4 threads at our disposal.

julia> Threads.nthreads()

4

But we are currently on the master thread. To check, we use the function Threads. threadid

julia> Threads.threadid()

1
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24.2 The @threads Macro

Let's work a simple example using our native threads. Let us create an array of zeros:

julia> a = zeros(10)
10-element Array{Float64,1}:

0.0

Let us operate on this array simultaneously using 4 threads. We'll have each thread write its thread ID into each

location.

Julia supports parallel loops using the Threads.@threads macro. This macro is affixed in front of a for loop to indicate

to Julia that the loop is a multi-threaded region:

julia> Threads.@threads for i = 1:10
a[i] = Threads.threadid()

end

The iteration space is split amongst the threads, after which each thread writes its thread ID to its assigned locations:

julia> a
10-element Array{Float64,1}:
1.0

1.0
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4.0

4.0

Note that Threads.@threads does not have an optional reduction parameter like @distributed.

24.3 Atomic Operations

Julia supports accessing and modifying values atomically, that is, in a thread-safe way to avoid race conditions. A
value (which must be of a primitive type) can be wrapped as Threads.Atomic to indicate it must be accessed in this

way. Here we can see an example:

julia> i = Threads.Atomic{Int}(0);

julia> ids = zeros(4);

julia> old_is = zeros(4);

julia> Threads.@threads for id in 1:4
old_is[id] = Threads.atomic_add!(i, id)
ids[id] = id

end

julia> old_is

4-element Array{Float64,1}:
0.0

1.0

7.0

3.0

julia> ids

4-element Array{Float64,1}:
1.0

2.0

3.0

4.0

Had we tried to do the addition without the atomic tag, we might have gotten the wrong answer due to a race condition.

An example of what would happen if we didn't avoid the race:


https://en.wikipedia.org/wiki/Race_condition
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julia> using Base.Threads

julia> nthreads()

4

julia> acc = Ref(0)

Base.RefValue{Int64}(0)

julia> @threads for i in 1:1000
acc[] += 1

end

julia> acc[]

926

julia> acc = Atomic{Int64}(0)

Atomic{Int64}(0)

julia> @threads for i in 1:1000
atomic_add! (acc, 1)

end

julia> acc[]

1000

Note

Not all primitive types can be wrapped in an Atomic tag. Supported types are Int8, Int16, Int32 Int64,
Int128, UInt8, UInt16, UInt32, UInt64, UInt128, Floatl6, Float32, and Float64. Additionally, Int128 and

UInt128 are not supported on AAarch32 and ppc64le.

24.4 Side effects and mutable function arguments

When using multi-threading we have to be careful when using functions that are not pure as we might get a wrong
answer. For instance functions that have their name ending with ! by convention modify their arguments and thus
are not pure. However, there are functions that have side effects and their name does not end with !. For instance

findfirst(regex, str) mutates its regex argument or rand() changes Base.GLOBAL_RNG :

julia> using Base.Threads


https://en.wikipedia.org/wiki/Pure_function
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julia> nthreads()

4

julia> function f()
s = repeat(["123", "213", "231"], outer=1000)
X = similar(s, Int)
rx = r"1"
@threads for i in 1:3000
x[i] = findfirst(rx, s[i]).start
end
count(v -> v == 1, x)
end

f (generic function with 1 method)

julia> f() # the correct result is 1000

1017

julia> function g()
a = zeros(1000)
@threads for i in 1:1000
al[i] = rand()
end
length(unique(a))
end

g (generic function with 1 method)

julia> Random.seed!(1); g() # the result for a single thread is 1000

781

In such cases one should redesign the code to avoid the possibility of a race condition or use synchronization primi-

tives.

For example in order to fix findfirst example above one needs to have a separate copy of rx variable for each thread:

julia> function f_fix()
s = repeat(["123", "213", "231"], outer=1000)
x = similar(s, Int)
rx = [Regex("1") for i in 1:nthreads()]
@threads for i in 1:3000

x[i] = findfirst(rx[threadid()], s[i]).start
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end
count(v -> v == 1, x)
end

f_fix (generic function with 1 method)

julia> f_fix()

1000

We now use Regex("1") instead of r"1" to make sure that Julia creates separate instances of Regex object for each

entry of rx vector.

The case of rand is a bit more complex as we have to ensure that each thread uses non-overlapping pseudorandom

number sequences. This can be simply ensured by using Future.randjump function:

julia> using Random; import Future

julia> function g_fix(r)
a = zeros(1000)
@threads for i in 1:1000
al[i] = rand(r[threadid()])
end
length(unique(a))
end

g_fix (generic function with 1 method)
julia> r = let m = MersenneTwister(1)
[m; accumulate(Future.randjump, fill(big(10)"20, nthreads()-1), init=m)]

end;

julia> g_fix(r)

1000

We pass the r vector to g_fix as generating several RGNs is an expensive operation so we do not want to repeat it

every time we run the function.

245 @threadcall (Experimental)

All 1/0 tasks, timers, REPL commands, etc are multiplexed onto a single OS thread via an event loop. A patched

version of libuv (http://docs.libuv.org/en/v1.x/) provides this functionality. Yield points provide for co-operatively


http://docs.libuv.org/en/v1.x/
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scheduling multiple tasks onto the same OS thread. I/0 tasks and timers yield implicitly while waiting for the event

to occur. Calling yield explicitly allows for other tasks to be scheduled.

Thus, a task executing a ccall effectively prevents the Julia scheduler from executing any other tasks till the call
returns. This is true for all calls into external libraries. Exceptions are calls into custom C code that call back into

Julia (which may then yield) or C code that calls j1_yield() (C equivalent of yield).

Note that while Julia code runs on a single thread (by default), libraries used by Julia may launch their own internal

threads. For example, the BLAS library may start as many threads as there are cores on a machine.

The @threadcall macro addresses scenarios where we do not want a ccall to block the main Julia event loop. It
schedules a C function for execution in a separate thread. A threadpool with a default size of 4 is used for this. The
size of the threadpool is controlled via environment variable UV_THREADPOOL_SIZE. While waiting for a free thread,
and during function execution once a thread is available, the requesting task (on the main Julia event loop) yields
to other tasks. Note that @threadcall does not return till the execution is complete. From a user point of view, it is

therefore a blocking call like other Julia APIs.
It is very important that the called function does not call back into Julia, as it will segfault.

@threadcall may be removed/changed in future versions of Julia.
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Multi-Core or Distributed Processing

An implementation of distributed memory parallel computing is provided by module Distributed as part of the

standard library shipped with Julia.

Most modern computers possess more than one CPU, and several computers can be combined together in a cluster.
Harnessing the power of these multiple CPUs allows many computations to be completed more quickly. There are two
major factors that influence performance: the speed of the CPUs themselves, and the speed of their access to memory.
In a cluster, it's fairly obvious that a given CPU will have fastest access to the RAM within the same computer (node).
Perhaps more surprisingly, similar issues are relevant on a typical multicore laptop, due to differences in the speed
of main memory and the cache. Consequently, a good multiprocessing environment should allow control over the
"ownership" of a chunk of memory by a particular CPU. Julia provides a multiprocessing environment based on

message passing to allow programs to run on multiple processes in separate memory domains at once.

Julia's implementation of message passing is different from other environments such as MPI !. Communication in
Julia is generally "one-sided", meaning that the programmer needs to explicitly manage only one process in a two-
process operation. Furthermore, these operations typically do not look like "message send" and "message receive" but

rather resemble higher-level operations like calls to user functions.

Distributed programming in Julia is built on two primitives: remote references and remote calls. A remote reference
is an object that can be used from any process to refer to an object stored on a particular process. A remote call is a

request by one process to call a certain function on certain arguments on another (possibly the same) process.
Remote references come in two flavors: Future and RemoteChannel.

A remote call returns a Future to its result. Remote calls return immediately; the process that made the call proceeds
to its next operation while the remote call happens somewhere else. You can wait for a remote call to finish by calling

wait on the returned Future, and you can obtain the full value of the result using fetch.
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On the other hand, RemoteChannel s are rewritable. For example, multiple processes can co-ordinate their processing

by referencing the same remote Channel.

Each process has an associated identifier. The process providing the interactive Julia prompt always has an id equal
to 1. The processes used by default for parallel operations are referred to as "workers". When there is only one

process, process 1 is considered a worker. Otherwise, workers are considered to be all processes other than process 1.

Let's try this out. Starting with julia -p n provides n worker processes on the local machine. Generally it makes
sense for n to equal the number of CPU threads (logical cores) on the machine. Note that the -p argument implicitly

loads module Distributed.

$ ./julia -p 2

julia> r = remotecall(rand, 2, 2, 2)

Future(2, 1, 4, nothing)

julia> s = @spawnat 2 1 .+ fetch(r)

Future(2, 1, 5, nothing)

julia> fetch(s)
2x2 Array{Float64,2}:
1.18526 1.50912

1.16296 1.60607

The first argument to remotecall is the function to call. Most parallel programming in Julia does not reference
specific processes or the number of processes available, but remotecall is considered a low-level interface providing
finer control. The second argument to remotecall is the id of the process that will do the work, and the remaining

arguments will be passed to the function being called.

As you can see, in the first line we asked process 2 to construct a 2-by-2 random matrix, and in the second line we
asked it to add 1 to it. The result of both calculations is available in the two futures, r and s. The @spawnat macro

evaluates the expression in the second argument on the process specified by the first argument.

Occasionally you might want a remotely-computed value immediately. This typically happens when you read from
a remote object to obtain data needed by the next local operation. The function remotecall_fetch exists for this

purpose. It is equivalent to fetch(remotecall(...)) but is more efficient.

julia> remotecall_fetch(getindex, 2, r, 1, 1)

0.18526337335308085
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Remember that getindex(r,1,1) is equivalent to r[1,1], so this call fetches the first element of the future r.

To make things easier, the symbol :any can be passed to [@spawnat], which picks where to do the operation for you:

julia> r = @spawnat :any rand(2,2)

Future(2, 1, 4, nothing)

julia> s = @spawnat :any 1 .+ fetch(r)

Future(3, 1, 5, nothing)

julia> fetch(s)
2x2 Array{Float64,2}:
1.38854 1.9098

1.20939 1.57158

Note that we used 1 .+ fetch(r) instead of 1 .+ r. This is because we do not know where the code will run, so in
general a fetch might be required to move r to the process doing the addition. In this case, @spawnat is smart enough

to perform the computation on the process that owns r, so the fetch will be a no-op (no work is done).

(It is worth noting that @spawnat is not built-in but defined in Julia as a macro. It is possible to define your own such

constructs.)

An important thing to remember is that, once fetched, a Future will cache its value locally. Further fetch calls do not

entail a network hop. Once all referencing Futures have fetched, the remote stored value is deleted.

@async is similar to @spawnat, but only runs tasks on the local process. We use it to create a "feeder" task for each
process. Each task picks the next index that needs to be computed, then waits for its process to finish, then repeats
until we run out of indices. Note that the feeder tasks do not begin to execute until the main task reaches the end
of the @sync block, at which point it surrenders control and waits for all the local tasks to complete before returning
from the function. As for v0.7 and beyond, the feeder tasks are able to share state via nextidx because they all run
on the same process. Even if Tasks are scheduled cooperatively, locking may still be required in some contexts, as in
asynchronous I/0. This means context switches only occur at well-defined points: in this case, when remotecall_fetch
is called. This is the current state of implementation and it may change for future Julia versions, as it is intended to
make it possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring¥releasing model for

nextidx will be needed, as it is not safe to let multiple processes read-write a resource at the same time.

25.1 Code Availability and Loading Packages

Your code must be available on any process that runs it. For example, type the following into the Julia prompt:


https://en.wikipedia.org/wiki/Thread_(computing)#Models
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julia> function rand2(dims...)
return 2+rand(dims...)

end

julia> rand2(2,2)
2x2 Array{Float64,2}:
0.153756 0.368514

1.15119 0.918912

julia> fetch(@spawnat :any rand2(2,2))
ERROR: RemoteException(2, CapturedException(UndefVarError(Symbol("#rand2"))
Stacktrace:

[...]

Process 1 knew about the function rand2, but process 2 did not.

Most commonly you'll be loading code from files or packages, and you have a considerable amount of flexibility in

controlling which processes load code. Consider a file, DunmyModule. j1, containing the following code:

module DummyModule

export MyType, f

mutable struct MyType
a::Int

end

f(x) = x"2+1

println("loaded")

end

In order to refer to MyType across all processes, DummyModule. j 1 needs to be loaded on every process. Calling include("DummyModule.j1")
loads it only on a single process. To load it on every process, use the @everywhere macro (starting Julia with julia

-p 2):

julia> @everywhere include("DummyModule.jl")

loaded
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From worker 3: loaded

From worker 2: loaded

As usual, this does not bring DummyModule into scope on any of the process, which requires using or import. Moreover,

when DummyModule is brought into scope on one process, it is not on any other:

julia> using .DummyModule

julia> MyType(7)

MyType(7)
julia> fetch(@spawnat 2 MyType(7))

ERROR: On worker 2:

UndefVarError: MyType not defined

julia> fetch(@spawnat 2 DummyModule.MyType(7))

MyType(7)

However, it's still possible, for instance, to send a MyType to a process which has loaded DummyModule even if it's not

in scope:

julia> put!(RemoteChannel(2), MyType(7))

RemoteChannel{Channel{Any}}(2, 1, 13)

A file can also be preloaded on multiple processes at startup with the -L flag, and a driver script can be used to drive

the computation:

julia -p <n> -L filel.jl -L file2.jl driver.jl

The Julia process running the driver script in the example above has an id equal to 1, just like a process providing

an interactive prompt.

Finally, if DummyModule.j1 is not a standalone file but a package, then using DummyModule will load DummyModule.jl

on all processes, but only bring it into scope on the process where using was called.

25.2 Starting and managing worker processes

The base Julia installation has in-built support for two types of clusters:
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A local cluster specified with the -p option as shown above.

A cluster spanning machines using the --machine-file option. This uses a passwordless ssh login to start Julia

worker processes (from the same path as the current host) on the specified machines.

Functions addprocs, rmprocs, workers, and others are available as a programmatic means of adding, removing and

querying the processes in a cluster.

julia> using Distributed

julia> addprocs(2)
2-element Array{Int64,1}:
2

3

Module Distributed must be explicitly loaded on the master process before invoking addprocs. It is automatically

made available on the worker processes.

Note that workers do not run a ~/.julia/config/startup.jl startup script, nor do they synchronize their global state

(such as global variables, new method definitions, and loaded modules) with any of the other running processes.

Other types of clusters can be supported by writing your own custom ClusterManager, as described below in the

ClusterManagers section.

25.3 Data Movement

Sending messages and moving data constitute most of the overhead in a distributed program. Reducing the number of
messages and the amount of data sent is critical to achieving performance and scalability. To this end, it is important

to understand the data movement performed by Julia's various distributed programming constructs.

fetch can be considered an explicit data movement operation, since it directly asks that an object be moved to the
local machine. @spawnat (and a few related constructs) also moves data, but this is not as obvious, hence it can be
called an implicit data movement operation. Consider these two approaches to constructing and squaring a random

matrix:

Method 1:

julia> A = rand(1000,1000);

julia> Bref = @spawnat :any A"2;
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julia> fetch(Bref);

Method 2:

julia> Bref = @spawnat :any rand(1000,1000)"2;

julia> fetch(Bref);

The difference seems trivial, but in fact is quite significant due to the behavior of @spawnat. In the first method,
a random matrix is constructed locally, then sent to another process where it is squared. In the second method, a
random matrix is both constructed and squared on another process. Therefore the second method sends much less

data than the first.

In this toy example, the two methods are easy to distinguish and choose from. However, in a real program designing
data movement might require more thought and likely some measurement. For example, if the first process needs
matrix A then the first method might be better. Or, if computing A is expensive and only the current process has it,
then moving it to another process might be unavoidable. Or, if the current process has very little to do between the
@spawnat and fetch(Bref), it might be better to eliminate the parallelism altogether. Or imagine rand(1000,1000) is
replaced with a more expensive operation. Then it might make sense to add another @spawnat statement just for this

step.

25.4 Global variables

Expressions executed remotely via @spawnat, or closures specified for remote execution using remotecall may refer
to global variables. Global bindings under module Main are treated a little differently compared to global bindings

in other modules. Consider the following code snippet:

A = rand(10,10)

remotecall_fetch(()->sum(A), 2)

In this case sum MU